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Аннотация. Рассматривается задача оптимального управления, дискретным процес-

сом описываемая системой двумерных разностных уравнений типа Вольтерра и функ-

ционалом типа Больца при предположении, что начальная функция является реше-

нием одномерного нелинейного разностного уравнения типа Вольтерра. Области 

управления являются ограниченными и замкнутыми множествами. Используя дис-

кретный аналог игольчатого типа вариаций, вычислено специальное приращение 

функционала качества. Учитывая выражение специального приращение функционала 

качества, доказан дискретный аналог принципа максимума Понтрягина. 
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Abstract. An optimal control problem is considered for a discrete process described by a 

system of two-dimensional Volterra-type difference equations and a Bolza-type cost func-

tional, assuming that the initial function is a solution to a one-dimensional nonlinear 

Volterra-type difference equation. The control domains are bounded and closed sets. Using 

a discrete analogue of the needle-type variation, a special increment of the cost functional is 

calculated. Based on this expression, a discrete version of Pontryagin's maximum principle 

is established. 
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Введение 

В работах [1, 2] исследованы различные задачи оптимального управления, пред-

ставляющее собой дискретный аналог непрерывной задачи оптимального управления, 

рассмотренной в работе [3]. 

В статье [4] рассмотрена задача оптимального управления системой двумерных раз-

ностных уравнений типа Вольтерра, представляющих собой обобщение задачи опти-

мального управления, из работ [1, 2]. В этой работе получен ряд необходимых условий 

оптимальности при предположении открытости областей управления. 

В предлагаемой работе рассматривается задача оптимального управления, анало-

гичная задаче управления из [4], которая исследуется при предположении ограниченно-

сти и замкнутости областей управления. 

При определенных предположениях на данные задачи управления доказан дискрет-

ный аналог принципа максимума Л. С. Понтрягина [5]. 

Рассматриваемую задачу оптимального управления можно интерпретировать как 

граничную задачу оптимального управления дискретными системами с распределен-

ными параметрами. 
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Отметим, что некоторые задачи оптимального управления дискретными процес-

сами, описываемые обыкновенными разностными уравнениями и разностными уравне-

ниями типа Вольтерра исследованы в работах [6–12]. 

1. Постановка задачи оптимального управления  

Предположим, что управляемый дискретный процесс описывается системой дву-

мерных разностных уравнений типа Вольтерра: 

𝑧(𝑡 + 1, 𝑥) = ∑ 𝑓(𝑡, 𝜏, 𝑥, 𝑧(𝜏, 𝑥), 𝑢(𝜏))

𝑡

𝜏=𝑡0

, 

𝑡 ∈ 𝑇 = {𝑡0, 𝑡0 + 1, . . . , 𝑡1 − 1}, 𝑥 ∈ 𝑋 = {𝑥0, 𝑥0 + 1, . . . , 𝑥1}              (1) 

с начальным условием 

𝑧(𝑡0, 𝑥) = 𝑎(𝑥), 𝑥 ∈ 𝑋,                                                     (2) 

где n-мерная вектор-функция 𝑎(𝑥)  является решением дискретного аналога задачи 

Коши: 

𝑎(𝑥 + 1) = ∑ 𝑔(𝑥, 𝑠, 𝑎(𝑠), 𝑣(𝑠))

𝑥

𝑠=𝑥0

, 𝑥 ∈ 𝑋\𝑥1,                                (3) 

𝑎(𝑥0) = 𝑎0.                                                                  (4) 

Здесь 𝑓(𝑡, 𝜏, 𝑥, 𝑧, 𝑢) (𝑔(𝑥, 𝑠, 𝑎, 𝑣)) − заданная, n-мерная вектор-функция, непрерыв-

ная по совокупности переменных вместе с частными производными по 𝑧(𝑎), 𝑎0 − задан-

ный постоянный вектор, 𝑡0, 𝑥0, 𝑡1, 𝑥1 − заданные натуральные числа, 𝑢(𝑡)(𝑣(𝑥)) − 𝑟(𝑞)-

мерный дискретный вектор управляющих воздействий со значенией из заданного огра-

ниченного и замкнутого множества 𝑈(𝑉), т.е. 

 𝑢(𝑡) ∈ 𝑈 ⊂ 𝑅𝑟 , 𝑡 ∈ 𝑇,                                                       (5) 

𝑣(𝑥) ∈ 𝑉 ⊂ 𝑅𝑞 , 𝑥 ∈ 𝑋\𝑥1. 
Такие управляющие функции назовем допустимыми. 

Экстремальная задача заключается в минимизации функционала типа Больца: 

𝑆(𝑢, 𝑣) = 𝜑(𝑎(𝑥1)) + ∑ 𝐺(𝑧(𝑡1, 𝑥))

𝑥1−1

𝑥=𝑥0

                                     (6) 

при ограничениях (1)–(5). 

Здесь  𝜑(𝑎) и 𝐺(𝑧) − заданные, непрерывно дифференцируемые, скалярные функ-

ции, допустимые управления 𝑢(𝑡) и 𝑣(𝑥) доставляющие минимальное значение функци-

оналу (6) при ограничениях (1)–(5) назовем оптимальным управлением.  

Целью работы является получение необходимых условий оптимальности в рассмат-

риваемой экстремальной задаче.  

2. Формула приращения функционала и оценка норм приращений решений за-

дач типа Коши (1)–(2) и (3)–(4) 

Построим формулу приращения функционала качества. Пусть (𝑢0(𝑡), 𝑣0(𝑥)) − не-

которое допустимое управление. Через (𝑢̄(𝑡) = 𝑢0(𝑡) + 𝛥𝑢(𝑡), 𝑣̄(𝑥) = 𝑣0(𝑥) + 𝛥𝑣(𝑥)) − 

обозначим произвольное допустимое управления.  
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Решения задач (1)–(2) и (3)–(4), отвечающие допустимым управлениям 

(𝑢0(𝑡), 𝑣0(𝑥))  и (𝑢̄(𝑡), 𝑣̄(𝑥))  обозначим соответственно через (𝑧0(𝑡, 𝑥), 𝑎0(𝑥))  и 

(𝑧̅(𝑡, 𝑥), 𝑎̅(𝑥)).  

Из введенных обозначений следует, что приращения, 𝛥𝑧(𝑡, 𝑥) и 𝛥𝑎(𝑥) являются ре-

шениями аналогов задач Коши: 

𝛥𝑧(𝑡 + 1, 𝑥) = ∑ [𝑓(𝑡, 𝜏, 𝑥, 𝑧̅(𝜏, 𝑥), 𝑢̅(𝜏)) − 𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏))]

𝑡

𝜏=𝑡0

,      (7) 

𝛥𝑧(𝑡0, 𝑥) = 𝛥𝑎(𝑥),                                                            (8) 

𝛥𝑎(𝑥 + 1) = ∑ [𝑔(𝑥, 𝑠, 𝑎̅(𝑠), 𝑣̅(𝑠)) − 𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠))]

𝑥

𝑠=𝑥0

,                     (9) 

𝛥𝑎(𝑥0) = 0.                                                                  (10) 

Введем скалярные функции типа Гамильтона–Понтрягина 

𝐻(𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡), 𝜓0(𝑡, 𝑥)) = ∑ 𝜓0′
(𝜏, 𝑥)𝑓(𝜏, 𝑡, 𝑥, 𝑧(𝑡, 𝑥), 𝑢(𝑡))

𝑡1−1

𝜏=𝑡

, 

𝑀(𝑥, 𝑎(𝑥), 𝑣(𝑥), 𝑝0(𝑥)) = ∑ 𝑝0′
(𝑠)𝑔(𝑠, 𝑥, 𝑎(𝑥), 𝑣(𝑥))

𝑥1−1

𝑠=𝑥

. 

Здесь 𝜓0(𝑡, 𝑥)  и 𝑝0(𝑥)  пока произвольные дискретные и ограниченные вектор-

функции, а штрих – операция транспонирования. 

Из тождеств (7) и (9), используя дискретный аналог теоремы Фубини (см. напри-

мер, работы [13, 14]) доказывается, что 

∑ ∑ 𝜓0′
(𝑡, 𝑥)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

∆𝑧(𝑡 + 1, 𝑥) = 

= ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

,     (11) 

∑ 𝑝0′
(𝑥)∆𝑎(𝑥 + 1)

𝑥1−1

𝑥=𝑥0

= 

=   ∑ [𝑀(𝑥, 𝑎̅(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

.              (12) 

Учитывая тождества (11) и (12), приращение функционала (6) представляется в 

виде: 

𝑆(𝑢̅, 𝑣̅) − 𝑆(𝑢0, 𝑣0) = 𝜑(𝑎̅(𝑥1)) − 𝜑(𝑎0(𝑥1)) + ∑ [𝐺(𝑧̅(𝑡1, 𝑥)) − 𝐺(𝑧0(𝑡1, 𝑥))]

𝑥1−1

𝑥=𝑥0

− 

− ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧̅(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

− 



Об одной дискретной задаче оптимального управления… 

9 

− ∑ [𝑀(𝑥, 𝑎̅(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

+ 

+ ∑ ∑ 𝜓0′
(𝑡, 𝑥)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

∆𝑧(𝑡 + 1, 𝑥) + ∑ 𝑝0′
(𝑥)∆𝑎(𝑥 + 1)

𝑥1−1

𝑥=𝑥0

.                  (13) 

Используя формулу Тейлора и учитывая начальные условия (8) и (10), формула при-

ращения (13) представляется в виде  

𝑆(𝑢̅, 𝑣̅) − 𝑆(𝑢0, 𝑣0) =
𝜕𝜑′(𝑎(𝑥1))

𝜕𝑎
∆𝑎(𝑥1) + 𝑜1(‖𝛥𝑎(𝑥1)‖) + 𝑝0′

(𝑥1)∆𝑎(𝑥1) − 

− ∑ 𝑝0′
(𝑥 − 1)∆𝑎(𝑥)

𝑥1−1

𝑥=𝑥0

− ∑ [𝑀(𝑥, 𝑎0(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

− 

− ∑
𝜕𝑀′(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))

𝜕𝑎

𝑥1−1

𝑥=𝑥0

∆𝑎(𝑥) − 

− ∑ [
𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥))

𝜕𝑎
−

𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))

𝜕𝑎
]

′𝑥1−1

𝑥=𝑥0

∆𝑎(𝑥) − 

− ∑ 𝑜2(‖𝛥𝑎(𝑥)‖)

𝑥1−1

𝑥=𝑥0

+ ∑
𝜕𝐺′(𝑧0(𝑡1, 𝑥))

𝜕𝑧

𝑥1−1

𝑥=𝑥0

𝛥𝑧(𝑡1, 𝑥) + ∑ 𝑜3(‖𝛥𝑧(𝑡1, 𝑥)‖)

𝑥1−1

𝑥=𝑥0

+ 

+ ∑ 𝜓0′
(𝑡1 − 1, 𝑥)∆𝑧(𝑡1, 𝑥)

𝑥1−1

𝑥=𝑥0

− ∑ 𝜓0′
(𝑡0 − 1, 𝑥)∆𝑎(𝑥)

𝑥1−1

𝑥=𝑥0

− 

− ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

+ 

+ ∑ ∑ 𝜓0′
(𝑡 − 1, 𝑥)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

∆𝑧(𝑡, 𝑥) 

− ∑ ∑
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

∆𝑧(𝑡, 𝑥) − 

− ∑ ∑ [
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧

𝑥1−1

𝑥=𝑥0

 𝑡1−1

𝑡=𝑡0

− 

−
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧
]

′

∆𝑧(𝑡, 𝑥) − ∑ ∑ 𝑜4(‖𝛥𝑧(𝑡, 𝑥)‖)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

.                  (14) 

Здесь, и в дальнейшем, ‖𝑦‖ норма вектора 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)′, определяемая фор-

мулой ‖𝑦‖ = ∑ |𝑦𝑖|
𝑛
𝑖=1 , а 𝑜(𝛼) −величина более высокого порядка, чем 𝛼, т.е. 𝑜(𝛼)/𝛼 → 0, 

при 𝛼 → 0.  

Предположим, что вектор-функции 𝜓0(𝑡, 𝑥), 𝑝0(𝑥) являются решениями линейных 

дискретных задач Коши 
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𝜓0(𝑡 − 1, 𝑥) =
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧
, 

𝜓0(𝑡1 − 1, 𝑥) = −
𝜕𝐺(𝑧0(𝑡1, 𝑥))

𝜕𝑧
, 

𝑝0(𝑥 − 1) =
𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))

𝜕𝑎
+ 𝜓0(𝑡0 − 1, 𝑥), 

𝑝0(𝑥1 − 1) = −
𝜕𝜑(𝑎(𝑥1))

𝜕𝑎
. 

Тогда формула приращения (14) функционала примет вид 

𝑆(𝑢̅, 𝑣̅) − 𝑆(𝑢0, 𝑣0) = − ∑ [𝑀(𝑥, 𝑎0(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

− 

− ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

− 

− ∑ [
𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣̅(𝑥), 𝑝0(𝑥))

𝜕𝑎
−

𝜕𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))

𝜕𝑎
]

′𝑥1−1

𝑥=𝑥0

∆𝑎(𝑥) − 

− ∑ ∑ [
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢̅(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧

𝑥1−1

𝑥=𝑥0

 𝑡1−1

𝑡=𝑡0

− 

−
𝜕𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))

𝜕𝑧
]

′

∆𝑧(𝑡, 𝑥) + 𝑜1(‖𝛥𝑎(𝑥1)‖) − ∑ 𝑜2(‖𝛥𝑎(𝑥1)‖) +

𝑥1−1

𝑥=𝑥0

 

+ ∑ 𝑜3(‖𝛥𝑧(𝑡1, 𝑥)‖)

𝑥1−1

𝑥=𝑥0

− ∑ ∑ 𝑜4(‖𝛥𝑧(𝑡, 𝑥)‖)

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

.                        (15) 

В дальнейшем нам понадобится оценки для ‖𝛥𝑎(𝑥)‖ и ‖𝛥𝑧(𝑡, 𝑥)‖. 

В силу задачи (9)–(10) ясно, что  

𝛥𝑧(𝑡 + 1, 𝑥) = ∑ [∆𝑧(𝜏 + 1, 𝑥) − ∆𝑧(𝜏, 𝑥)]

𝑡

𝜏=𝑡0

+ ∆𝑧(𝑡0, 𝑥). 

Поэтому, используя дискретный аналог леммы Фубини (см. например, [13, 14]), по-

лучаем справедливость тождества: 

𝛥𝑧(𝑡 + 1, 𝑥) = ∑ [∑[𝑓(𝛼, 𝜏, 𝑥, 𝑧̅(𝜏, 𝑥), 𝑢̅(𝜏)) − 𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏))]

𝑡

𝛼=𝜏

− ∆𝑧(𝜏, 𝑥)]

𝑡

𝜏=𝑡0

+ 

+𝛥𝑎(𝑥). 

Из этого тождества, переходя к норме и учитывая непрерывно-дифференцируе-

мость, вектор-функции 𝑓(𝑡, 𝜏, 𝑧, 𝑢), по 𝑧 приходим к неравенству 
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‖𝛥𝑧(𝑡 + 1, 𝑥)‖ ≤ 𝐿1 ∑ ‖∆𝑧(𝜏, 𝑥)‖ + ‖𝛥𝑎(𝑥)‖

𝑡

𝜏=𝑡0

+ 

+ ∑ ∑‖𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢̅(𝜏)) − 𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏))‖

𝑡

𝛼=𝜏

𝑡

𝜏=𝑡0

, 

где 𝐿1 = 𝑐𝑜𝑛𝑠𝑡 > 0 некоторая постоянная. 

Применяя к последнему неравенству дискретный аналог леммы Гронуолла–Белл-

мана (см., например, [15]) получаем, что  

‖𝛥𝑧(𝑡, 𝑥)‖ ≤ 𝐿2[‖𝛥𝑎(𝑥)‖ + 

∑ ∑‖𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢̅(𝜏)) − 𝑓(𝛼, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏))‖

𝑡

𝛼=𝜏

𝑡

𝜏=𝑡0

.         (16) 

Здесь 𝐿2 = 𝑐𝑜𝑛𝑠𝑡 > 0 некоторая постоянная. 

Далее задача (9)–(10) может быть представлено в виде  

𝛥𝑎(𝑥 + 1) = ∑ [∑[𝑔(𝛽, 𝑠, 𝑎̅(𝑠), 𝑣̅(𝑠)) − 𝑔(𝛽, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠))]

𝑥

𝛽=𝑠

− 𝑎(𝑠)]

𝑥

𝑠=𝑥0

. 

Из этого тождества, после некоторых преобразований, применяя дискретный ана-

лог леммы Гронуолла–Беллмана, получаем справедливость оценки: 

‖𝛥𝑎(𝑥)‖ ≤ 𝐿3 ∑ ∑[𝑔(𝛽, 𝑠, 𝑎0(𝑠), 𝑣̅(𝑠)) − 𝑔(𝛽, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠))]

𝑥

𝛽=𝑠

𝑥

𝑠=𝑥0

.           (17) 

Здесь 𝐿3 = 𝑐𝑜𝑛𝑠𝑡 > 0 также  некоторая постоянная. 

3. Необходимые условия оптимальности 

Введем в рассмотрение множества  

𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑈) = {𝑐; 𝑐 = 𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢(𝜏)); 𝑢(𝜏) ∈ 𝑈, 𝜏 ∈ 𝑇},         (18) 

𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑉) = {𝑑; 𝑑 = 𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣(𝑠)); 𝑣(𝑠) ∈ 𝑉, 𝑠 ∈ 𝑋\𝑥1}.            (19) 

Предположим, что множества (18) и (19) выпуклы.  

Теперь предположим, что 𝛥𝑣(𝑥) = 0  и специальное приращение допустимого 

управления определим по формуле  

∆𝑢𝜀(𝑡) = 𝑢(𝑡; 𝜀) − 𝑢0( 𝑡), 𝑡 ∈ 𝑇.                                                (20) 

Здесь 𝜀 ∈ [0, 1] − произвольное число, а 𝑢(𝑡; 𝜀) произвольное допустимое управле-

ние, такое, что 

𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏) + ∆𝑢𝜀(𝜏)) − 𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏)) ≡ 

≡ 𝜀𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢(𝜏)) − 𝑓(𝑡, 𝜏, 𝑥, 𝑧0(𝜏, 𝑥), 𝑢0(𝜏)), 

где 𝑢(𝑡) − произвольное допустимое управление, соответствующее управлению 𝑢(𝑡; 𝜀). 
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 Через ∆𝑧𝜀(𝑡, 𝑥) обозначим специальное приращение решения 𝑧0(𝑡, 𝑥). 

Учитывая оценку (16) из формулы приращения (15) функционала, получаем, что 

𝑆(𝑢0 + ∆𝑢, 𝑣0) − 𝑆(𝑢0, 𝑣0) = 

= −𝜀 ∑ ∑ [𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

+ 

+𝑜(𝜀).                                                                      (21) 

Далее предполагая, что ∆𝑢(𝑡) = 0 , специальное приращение управления 𝑣0(𝑥) 

определим по формуле 

∆𝑣𝜇(𝑥) = 𝑣(𝑥; 𝜇) − 𝑣0( 𝑥).                                                (22) 

Здесь 𝜇 ∈ [0, 1] − произвольное число, а 𝑣(𝑥; 𝜇) произвольное допустимое управ-

ление, такое, что  

𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣(𝑠; 𝜇)) − 𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠)) = 

= −𝜇 (𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣(𝑠)) − 𝑔(𝑥, 𝑠, 𝑎0(𝑠), 𝑣0(𝑠))). 

Здесь 𝑣(𝑥) произвольное допустимое управление, соответствующее допустимому 

управлению 𝑣(𝑥; 𝜇). 

Через ∆𝑧(𝑡, 𝑥; 𝜇)  и ∆𝑎(𝑥; 𝜇)  обозначим специальные приращения решения 𝑧0(𝑡, 𝑥) 

и 𝑎0(𝑥), соответствующие специальному приращению (22) управления 𝑣0( 𝑥). 

Из установленных оценок (16) и (17) при этом следует, что ‖𝛥𝑧(𝑡, 𝑥; 𝜇)‖  и 

‖𝛥𝑎(𝑥; 𝜇)‖ имеют порядок малости 𝜇. Поэтому из формулы приращения (15) следует, что  

𝑆(𝑢0(𝑥), 𝑣0(𝑥) + ∆𝑣(𝑥; 𝜇)) − 𝑆(𝑢0(𝑥), 𝑣0(𝑥)) = 

= −𝜇 ∑ [𝑀(𝑥, 𝑎0(𝑥), 𝑣(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

+ 𝑜(𝜇).      (23) 

Из разложений (21) и (23) следует необходимое условие оптимальности. 

Теорема 1. Если множества (18) и (19) выпуклы, то для оптимальности допустимых 

управлений 𝑢0(𝑡) и 𝑣0(𝑥) необходимо, чтобы неравенства 

∑ ∑ [𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢(𝑡), 𝜓0(𝑡, 𝑥)) − 𝐻(𝑡, 𝑥, 𝑧0(𝑡, 𝑥), 𝑢0(𝑡), 𝜓0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

𝑡1−1

𝑡=𝑡0

≤ 0,    (24) 

∑ [𝑀(𝑥, 𝑎0(𝑥), 𝑣(𝑥), 𝑝0(𝑥)) − 𝑀(𝑥, 𝑎0(𝑥), 𝑣0(𝑥), 𝑝0(𝑡, 𝑥))]

𝑥1−1

𝑥=𝑥0

≤ 0      (25) 

выполнялись для всех допустимых управлений 𝑢(𝑡) и 𝑣(𝑥) соответственно. 

Неравенства (24) и (25) представляют собой аналог дискретного принципа макси-

мума (см., например, [5, 13]) для рассматриваемой задачи. 

Заметим, что необходимые условия оптимальности допускают упрощения. Исполь-

зуя произвольность допустимых управлений 𝑢(𝑡)  и 𝑣(𝑥),  доказывается следующее 

утверждение. 

Теорема 2. Пусть множества (18) и (19) выпуклы. Тогда для оптимальности допу-

стимых управлений 𝑢0(𝑡) и 𝑣0(𝑥) необходимо, чтобы неравенства 
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∑ [𝐻(𝜃, 𝑥, 𝑧0(𝜃, 𝑥), 𝑢(𝜃), 𝜓0(𝜃, 𝑥)) − 𝐻(𝜃, 𝑥, 𝑧0(𝜃, 𝑥), 𝑢0(𝜃), 𝜓0(𝜃, 𝑥))]

𝑥1−1

𝑥=𝑥0

≤ 0,    (26) 

𝑀(𝜉, 𝑎0(𝜉), 𝑣(𝜉), 𝑝0(𝜉)) − 𝑀(𝜉, 𝑎0(𝜉), 𝑣0(𝜉), 𝑝0(𝑡, 𝜉)) ≤ 0                    (27) 

выполнялось для всех 𝜃 ∈ 𝑇, 𝑢 ∈ 𝑈 и 𝜉 ∈ 𝑋\𝑥1, 𝑣 ∈ 𝑉 соответственно. 

Замечание. Можно показать, что результаты теорем 1 и 2 равносильны. 

Заключение 

В статье рассмотрена одна дискретная задача оптимального управления при пред-

положении, что процесс описывается двумерным разностным уравнением типа Воль-

терра, а начальное условие, являясь управляемым, определяется из задачи Коши для не-

линейного разностного уравнения Вольтерра. При предположении выпуклости аналогов 

множеств допустимых скоростей рассматриваемых уравнений доказано необходимое 

условие оптимального первого порядка в форме дискретного аналога принципа макси-

мума Понтрягина. 
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