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В работе проведено теоретическое исследование тепловой конвекции наножидкости в подо-

греваемых снизу связанных каналах. Рассматривались связанные каналы конечной высоты с 

твердыми высоко теплопроводными границами. Прямое численное моделирование основы-

валось на уравнениях в частных производных, полученных с помощью галеркинского осред-

нения по продольной координате.  Результирующие уравнения решались методом конечных 

разностей. По результатам расчетов показано, что нормальная термодиффузия в рассматри-

ваемой конвективной среде оказывает решающее влияние на формирование специфических 

нелинейных перебросовых колебаний. В ходе численного моделирования были получены по-

ля скорости, температуры и концентрации наночастиц в поперечном сечении на разной высо-

те каналов. Форма и период этих колебаний в зависимости от надкритичности были проана-

лизированы для разных значений управляющих параметров. Квадратичная зависимость 

вязкости коллоидного раствора от концентрации наночастиц принималась во внимание в тео-

ретической модели. Показано, что период перебросовых колебаний должен возрастать при 

уменьшении средней начальной концентрации наночастиц. Нормировка периода колебаний 

на критическое число Рэлея позволила получить универсальный закон, справедливый для 

наножидкостей c разными зависимостями вязкости от концентрации. Качественное сравнение 

показало согласие результатов расчета с известными экспериментальными данными. 
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Thermal convection of a nanofluid in connected channels heated from below was studied theoreti-

cally. Thin channels with boundaries of high thermal conductivity were considered. Direct numerical 

simulation was based on the set of partial differential equations derived with the help of Galerkin 

method. The final system was solved by the method of finite differences. It has been shown that 

normal thermodiffusion exerts principal influence on the formation of particular non-linear flop-over 

oscillations. Cross-sections of concentration, velocity and temperature were obtained at various 

heights in the channel. The form and period of these oscillations were analyzed with respect to su-

percriticality for different values of governing parameters. A quadratic dependence of viscosity on 

concentration was taken into account. The period of oscillation was found to decrease with the 

growth of this effect. As a result of the normalization procedure the general law for the period of os-

cillation has been found. Qualitative agreement between calculation and experiment has been 

demonstrated. 
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1. Introduction 

For non-uniformly heated fluids, convective flows 

occur due to the dependence of density on temperature 

[1]. In the case of binary mixtures, the inhomogeneous 

concentration distribution also plays a role in convec-

tion, and this gives rise to more complex behavior [2]. 

These effects are dependent on the temperature and 

concentration gradients. In a mixture, the temperature 

gradients are responsible for the occurrence of concen-

tration gradients (thermodiffusion). Thermodiffusion 

can be considered as a cross effect in the general theo-

ry of Onsager [3]. The case where a positive tempera-

ture gradient creates a negative concentration gradient 

of the heavier component is known as positive (nor-

mal) thermodiffusion. 

In vertical connected channels heated from below, 

positive thermodiffusion and thermoconvection to-

gether give rise to observed “flop-over” oscillations in 

certain intervals of the Rayleigh number, where the ve-

locity of the fluid in the direction of the channel has 

approximately a square-wave profile, Glukhov and 

Putin [4]. The calculation of flop-over oscillations was 

first carried out for binary mixtures in [5], where in 

accordance with experiment the boundaries were con-

sidered to have high thermal conductivity compared to 

the fluid. 

In this paper, we investigate these flop-over oscil-

lations in thin connected channels for nanofluids with 

heavy particles and viscosity dependent on concentra-

tion. Experiments have shown that concentration can 

have a significant contribution to viscosity for many 

natural and artificial nanofluids [6, 7]. We suppose 

that this dependence may be important in providing a 

more accurate description of flop-over oscillations. 

2. Statement of the problem 

2.1. Geometry of set-up 

Let us consider connected channels (convective 

loop) oriented vertically and heated from below, as in 

fig. 1. The channels have finite height h and half-

width d, with the condition h >> d. 

 
Fig.1. Geometry of the problem and coordi-

nate system. 



14 D. Z. Allen, R. J. Banks, V. A. Demin 

The boundaries are assumed to have high thermal 

conductivity, in accodance with experiments [4,5]. In 

the experiments, this was achieved by embedding the 

channels in a homogeneous metal block. The 

temperature profile along the centre of the opaque 

channels was determined using thermocouples. This 

allowed the flow intensity along the centre of the 

channel to be estimated quantatively. For small Ray-

leigh number, it was found that the velocity of the flu-

id was one dimensional, directed along the channel. At 

the same time the fields of temperature and concentra-

tion were observed to be a function of all spatial coor-

dinates. It was established that the complexity of these 

fields leads to a highly non-trivial time evolution of 

this hydrodynamic system. 

In our system, the z-axis is oriented vertically up-

wards, the x and y axes lie in the channel’s cross sec-

tion. The temperature difference between the top and 

bottom of the channels is . Gravity is directed verti-

cally downwards (0, 0, )g g , see fig.1. 

2.2. Basic equations 

Now let us take the well-known generalized equa-

tions of thermal convection in the Boussinesq approx-

imation to describe the behavior of an incompressible 

fluid in connected channels. This system includes the 

generalized Navier-Stokes equation, mass conserva-

tion law, equations of heat and admixture transfer 

[1,8]:  

1
2

v
v v p v v

t
  

 + g
t c

v T C ,  (2.1) 

 
T

v T T
t

,        vdiv 0 , (2.2) 

 
C

v C D C T
t

. (2.3) 

Here,v , p, T and C are dimensional fields of velocity, 

pressure, temperature and the concentration of the 

heavier component. Parameters χ, t, c are positive 

coefficients of thermal diffusivity, thermal expansion 

and dependence of density on concentration, respec-

tively; D and  are the diffusion and thermodiffusion 

coefficients; ρ is the average density of the fluid; g is 

the gravitational acceleration; and  is the unit vector 

oriented vertically upward. 

The kinematic viscosity,, we take to be dependent 

on concentration quadratically [6], with the form: 

 2

0
1

d d
C C , (2.4) 

where d, d are positive dimensional parameters de-

pendent on the properties of the nanofluid; 0 is the 

kinematic viscosity of the pure liquid. 

The sides of the channels are rigid therefore the ve-

locity vanishes on the boundaries. As a result of the 

heating from below a linear temperature distribution 

takes place on the boundaries T0 = – z/h + . The 

unknown fields of velocity v  and temperature T = T0 

+ T in equations (2.1), (2.2) must satisfy to the fol-

lowing boundary conditions:  


0v , 


0T . 

These account for the existence of non-slip and non-

penetration conditions on all sides of the channels, and 

the high thermal conductivity of the boundaries. 

Let us continue the numerical analysis of the equa-

tions (2.1)–(2.3) in terms of non-dimensional varia-

bles. We shall use following set of units during the 

simulation: length [x, y, z] – d; time [t] – d2/0; 

velocity [v] – 0/d; temperature [T] – ; concentration 

[C] – t/c; pressure [p] – 0
2/d2. The equations 

of thermal convection in non-dimensional form can be 

written as 

2
v

v v p v v
t

  

 
RaH

+
Pr

v T C ,  (2.5) 

 
1

Pr

T
v T T

t
,        vdiv 0 , (2.6) 

 
Sc

1C
v C C T

t
, (2.7) 

 
21 C C . (2.8) 

The following non-dimensional governing parameters 

are used: 

g d

0

3

2
Ra t , 0Pr , Sc 0

D
, c

t

,  


t

d

c

, 


2

t
d

c

, 
h

H
d

, 

where Ra, Pr and Sc are the Rayleigh, Prandtl and 

Schmidt numbers respectively;  is the non-

dimensional thermodiffusion parameter;  and  de-

scribe the dependence of viscosity on concentration; H 

is the non-dimensional height. 

In the calculations, we use the straight trajectory 

approximation for the velocity v u(0, 0, ( , , ))x y t . 

The form of u(x, y, t) automatically satisfies the in-

compressibility requirement. As h >> d, we limit our 

considerations to the vertical channels of the convec-

tive loop. 



Oscillations in connected channels for nanofluids… 

  

15 

The non-dimensional flux of matter is given by  

J C T . 

The non-penetration boundary condition implies 

 0
n
J .  (2.9) 

We impose the condition that the net density flux 

through the two channels is zero: 

(1) (2) 0
s

u u dxdy , 

where the superscripts denote the left and right chan-

nels correspondingly. 

3. Mechanical equilibrium 

For small Rayleigh number, a mechanical equilib-

rium state exists, where v 0  and 0t . The 

non-dimensional temperature distribution at equilibri-

um is 

0
 – 1
z

T
H

. 

Accounting for the condition on flux and equation 

(2.7), the concentration field is described by 

0 0
 C
z

H
C . 

The integration constant 
0
C can be expressed in terms 

of the mean concentration
0
C : 

0 0
 

2
CC . 

Let us emphasize the net flux of matter is equal to zero 

in mechanical equilibrium. 

4. Method of solution 

In non-equilibrium states, we have 3D fields of 

concentration, temperature and velocity, which in gen-

eral depend on time. The full concentration and tem-

perature fields can be written as C = C0 + C and T = 

T0 + T, where C and T are the deviations from me-

chanical equilibrium. We reformulate the equations 

(2.5)–(2.7) in terms of these deviations and solve nu-

merically.  

To simplify the application of boundary condition 

(2.9), we introduce the new function F = C + T. The 

associated boundary condition is  

0
n

F . 

In the following calculations we omit the primes for 

greater clarity. In the terms of the deviation fields the 

equation system has the form 

 
u p

u
t z

  

 
RaH

(1 )
Pr

u T F ,  (4.1) 

 
1

Pr

T T u
u T

t z H
, (4.2) 

 
Sc

1

Pr

F F
u F T

t z
. (4.3) 

The plane Laplace operator is used in equation (4.1) 

2 2

2 2
.

x y
 

Experimental results [4] indicate the vertical distri-

bution of temperature can be written in terms of two 

harmonic functions 

1 2
( , , )sin ( , , )cos

z z
T T x y t T x y t

H H
. 

Here T1 and T2 are amplitudes dependent on the cross 

section coordinates and time only. Considering the 

symmetries of equations (4.1)–(4.3) we suggest the 

following expansion for F: 

1 2
( , , ) ( , , )cos

z
F F x y t F x y t

H
 

3

2
( , , )cos

z
F x y t

H
. 

We integrate (4.1) over both channels to remove 

from this equation the pressure gradient as it does not 

affect buoyancy forces. For equations (4.2) and (4.3) 

we apply the Galerkin procedure to find the equations 

for amplitudes. The resultant system of partial differ-

ential equations for the amplitudes u, T1, T2, F1, F2 

and F3 can be found in the appendix. The equation for 

u involves only terms anti-symmetric for left and right 

channels. 

The equation system for amplitudes was solved 

numerically by the method of finite differences in 

combination with the explicit scheme [9]. One sided 

and central differences were used to approximate the 

time and spatial coordinate derivatives respectively, 

including the convective and diffusive terms [10]. 

Numerical stability was achieved by choosing an ap-

propriate time step. The initial transitional flows in the 

results were ignored and stable regimes were investi-

gated. 

5. Results and discussion 

In the course of direct numerical simulation, we 

focused our attention on the regime of flop-over oscil-
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lations. The characteristic form of these oscillations is 

illustrated in figure 2. 

 

Fig. 2. The velocity at the center of the chan-

nel for  = 0.2,   = 0.5, mean concentration 

0
0.1C , Ra = 53. 

We observe that an approximately steady flow is 

established with periodic sharp changes in direction.  

The mechanism responsible for the observed effects is 

mainly attributed to the horizontal thermodiffusive 

separation of the mixture. From experiment [4], the 

horizontal temperature gradients /d = 3 K/cm are 

much larger than the vertical gradients 

/h = 0.3 K/cm, which has a characteristic diffusive 

separation time of h2/D ~ 300 days.  The horizontal 

gradients have characteristic separation time d2/D ~ 3 

hours, which coincides in order of magnitude with the 

oscillation period of the ferrofluid from experiment 

[4]. Considering first the channel with a flow moving 

up, the fluid in the center has greater velocity and 

temperature than the surrounding fluid (fig.3 (a)). 

Therefore, as a result of thermodiffusion, the heavier 

admixture diffuses towards the slower fluid layer on 

the boundary. Over time, the channel with upwards 

flow accumulates the heavier admixture, whilst the 

opposing channel loses it. When the channel becomes 

sufficiently heavy, the flow stops abruptly and changes 

direction.  

For our simulation the following values for the 

governing set of parameters were used: Pr = 10, 

Sc = 75,  = 0.3 and H = 30.5. Between simulations 

the parameters , , 
0
C  and Ra were varied in order to 

analyze the effect of concentration dependence of vis-

cosity. 

In figure 3 the channel with upward velocity is pre-

sented. Figure 3(a) shows the temperature deviation 

profile at various heights along the channel. In our 

theoretical model we neglect the horizontal parts of the 

convective loop therefore the full temperature at the 

ends of the channels must be continuous. At the bot-

tom of the channel the temperature profile has a small-

er amplitude than in the upper parts of the channel. 

This behavior is expected as the inflow at the bottom 

of the channel has just exited the colder channel.  

The concentration deviation field at various heights 

is illustrated in fig. 3(b). For z = h/4 and lower the 

concentration is greater in the center of the channel 

than near the boundaries. We can see that the concen-

tration of nanoparticles diffuses towards the bounda-

ries as fluid moves up the channel. Towards the top of 

the channel (z = 3h/4) the concentration in the center 

is smaller. These calculations support the thermodiffu-

sion mechanism outlined earlier in the text and in [5]. 

The aim of our work is to take into account the ef-

fect of concentration dependence of viscosity (2.8). It 

was not necessary to consider this effect in molecular 

solutions [5], but experimental data suggest that this 

may be significant for nanofluids [6].  

In our model, the parameters  and  determine the 

strength of this dependence. The mean concentration 

0
C  also affects the convective flows of nanofluids. We 

are interested in the period of flop-over oscillations for 

different values of these parameters, as this is accu-

rately measured by experiment [4, 5]. We can obtain 

from fig. 2 the dimensional value of oscillation period 

: taking the viscosity  = 2.710-6 m2/s and channel 

width d = 2 mm, we have  ~ 1.6 hours, which is qual-

itatively verified by the result from experiment [4]. 

The quantitative data of period dependence on Ray-

leigh number from simulation are presented in fig. 4.   

It is seen that the period of oscillations increases with 

Rayleigh number (which is proportional to the temper-

ature difference) approximately linearly. Properties of 

the nanofluid  and  are considered to be constant. 

With the decrease of mean concentration the period 

becomes greater in agreement with experiment [4]. 

The threshold of flop-over oscillations depends on the 

mean concentration,  and . Flop-over oscillations 

start for each mean concentration at a different critical 

Rayleigh number Rac, which are the lowest values of 

Ra in fig. 4. Let us attempt to find a universal law for 

these dependences.  

To visualize final data we introduce supercriticality 

 = (Ra – Rac)/Rac. By plotting the period against su-

percriticality for each mean concentration value we 

produce a generalized law (fig. 5). 
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Fig. 4. Non-dimensional period of oscilla-

tions against Rayleigh number for different 

values of parameters. 
 

 
 

Fig. 5. Normalized period of oscillations against Ray-

leigh number for some values of parameters. 

 

The linear trend line in fig.5 is given by: 

( )μ 37.5 3.0 10 . 

The law suggests that, for a given nanofluid, there is a 

minimum period for flop-over oscillations regardless 

of mean concentration. For our parameters, this is ~ 

3103. The period of flop- over oscillation in a given 

nanofluid (constant Sc, Pr, and ) for small values of 

supercriticality can to a good approximation be de-

scribed as having a linear dependence on , a conven-

ient parameter to measure in experiments. The flop-

over regime’s dependence on concentration must be 

contained in the critical value of temperature c = 

c(, , 
0
C ,…). Our numerical results so far suggest 

c increases with
0
C . Many further simulations would 

have to be performed to determine a more explicit 

form of c; however its value is easily attainable from 

experiment. 

Though the model provided by this paper allows 

for a description of flop-over oscillations and depend-

ence on Rayleigh number and mean concentration it is 

by no means complete. In this simulation we increased 

the Rayleigh number (experimentally realized by in-

creasing the temperature difference) without changing 

 
 

(a) 

 
(b) 

Fig. 3. The fields of temperature (a) and concentration (b) in a cross section of the channel on different heights for 

 = 0.2,   = 0.5, mean concentration
0

0.1C , Ra = 56. 
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other parameters dependent on temperature difference 

(e.g.  , , 
0
C ). Further research may wish to take into 

account the temperature dependence of the other gov-

erning parameters. Possible future work could even in-

clude varying the Schmidt number with potential con-

centration dependence. 

6. Conclusion 

Non-steady thermal convection of a nanofluid in 

connected channels with boundaries of high heat con-

ductivity was investigated theoretically guided by ex-

periment. In our model we assume the liquid moves 

predominantly vertically, adjacent to heat-conducting 

boundaries. We suggest that the separation of compo-

nents in the horizontal plane by thermodiffusion is re-

sponsible for the complex “flop-over” oscillatory re-

gime. Our direct numerical simulation based on 

hydrodynamic equations for the convective loop is in 

qualitative agreement with the results of experiments 

[4, 5]. The simulations in this paper have demonstrat-

ed that the introduction of concentration dependent 

viscosity clearly affects the period of flop-over oscilla-

tions in a convective loop. This brings numeric simula-

tions qualitatively in line with the results of experi-

ments on nanofluids. 

We are grateful for the financial support of the 
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the University of Oxford’s Career Service and the In-

ternational Department at Perm State University for 

providing the research opportunity. 

Appendix 

The following final partial differential equation 

system gives the time evolution for amplitudes 

T1(x, y, t), T2(x, y, t), u(x, y, t), F1(x, y, t), F2(x, y, t), 

F3(x, y, t). After solving for these amplitudes, we re-

turn to the full values of temperature, velocity and 

concentration. 

  

Rau
u

22

0 0 1 1
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1 1

12 Pr 2

H
C C T F
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u2 2 2 2 2 2

1 2 3 2 2 1 2 1 3 1

1 4
2 2 3

2 3
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F
F T T F

t H H H
, 

Sc

u
2 2

3
2 3 3 1 1

4 1 4
4

3 3 Pr

F
F F F T T

t H H H
,      

x y
e e
x y

. 

  

 

Список литературы 

1.  Гершуни Г. З., Жуховицкий Е. М. Конвективная 

устойчивость несжимаемой жидкости. М.: 

Наука, 1972. 392 с. 

2.  Nield D. The thermohaline Rayleigh-Jeffreys prob-

lem. Journal of Fluid Mechanics. 1967. Vol. 29. N. 

3. P. 545–558. DOI:10.1017/S0022112067001028 

3.  Onsager L. Theories and problems of liquid diffu-

sion // Annals of the New York Academy of Sci-

ences. 1945. Vol. 46. N. 5. P. 241–265. 

4.  Glukhov A. F., Putin G. F. Convection of magnetic 

fluids in connected channels heated from below // 

Fluid Dynamics. 2010. Vol. 45. N. 5. P. 713–718. 

5.  Glukhov A. F., Demin V. A., Putin G. F. Binary-

mixture convection in connected channels heated 

from below // Fluid Dynamics. 2007. Vol. 42. N. 2. 

P. 160–169. 

6.  Rudyak V. Ya. Viscosity of nanofluids – Why it is 

not described by the classical theories // Advances 

in nanoparticles. 2013. N. 2. P. 266–279. 

7.  Sprenger L., Lange A., Odenbach S. Thermodiffu-

sion in concentrated ferrofluids: A review and cur-



Oscillations in connected channels for nanofluids… 

  

19 

rent experimental and numerical results on non-

magnetic thermodiffusion // Physics of Fluids. 

2013. Vol. 25, 122002. 

8.  Ландау Л. Д., Лифшиц Е. М. Гидродинамика. 

М.: Наука, 1986. 736 с. 

9.  Роуч П. Вычислительная гидродинамика. М.: 

Мир, 1980. 616 с. 

10. Fletcher C.A.J. Computational techniques for fluid 

dynamics. Springer series in computational phys-

ics. Vol. 1, 2005, 406 p. 

References 

1.  Gershuni G. Z., Zhukhovitskii E.M. Convective 

stability of incompressible fluids. Jerusalem: Keter 

Publishing House, 1976, 330 p. 

2.  Nield D. The thermohaline Rayleigh–Jeffreys 

problem. Journal of Fluid Mechanics, 1967, vol. 

29, no. 3, pp. 545–558. 

DOI:10.1017/S0022112067001028 

3.  Onsager L. Theories and problems of liquid diffu-

sion. Annals of the New York Academy of Sciences, 

1945, vol. 46, no. 5, pp. 241–265. 

4.  Glukhov A. F., Putin G. F. Convection of magnetic 

fluids in connected channels heated from below. 

Fluid Dynamics, 2010, vol. 45, no. 5, pp. 713–718. 

5.  Glukhov A. F., Demin V. A., Putin G. F. Binary-

mixture convection in connected channels heated 

from below. Fluid Dynamics, 2007, vol. 42, no. 2, 

pp. 160–169. 

6.  Rudyak V. Ya. Viscosity of nanofluids – Why it is 

not described by the classical theories. Advances in 

nanoparticles, 2013, no. 2, pp. 266-279. 

7.  Sprenger L., Lange A., Odenbach S. Thermodiffu-

sion in concentrated ferrofluids: A review and cur-

rent experimental and numerical results on non-

magnetic thermodiffusion. Physics of Fluids, 2013, 

vol. 25, 122002. 

8.  Landau L. D., Lifshitz E. M. Course of Theoretical 

Physics, vol. 6. Fluid Mechanics. Oxford: Butter-

worth-Heinemann, 1987. 554 p. 

9.  Roache P. Computational fluid dynamics. Albu-

querque, New Mexico, Hermosa Pub., 1976. 

446 p. 

10. Fletcher C. A. J. Computational techniques for flu-

id dynamics. Springer series in computational 

physics. Vol. 1, 2005, 406 p. 

 

 

Просьба ссылаться на эту статью в русскоязычных источниках следующим образом: 

Аллен Д. З., Бэнкс Р. Д., Демин В. А. Теоретическое исследование перебросовых колебаний наножидко-

сти в связанных каналах при учете зависимости вязкости среды от концентрации частиц // Вестник Перм-

ского университета. Физика. 2019. № 3. С. 12–19. doi: 10.17072/1994-3598-2019-3-12-19 

 

Please cite this article in English as: 

Allen D. Z., Banks R. J., Demin V. A. A theoretical study of flop-over oscillations in connected channels for 

nanofluids with concentration dependent viscosity. Bulletin of Perm University. Physics, 2019, no. 3, pp. 12–19. 

doi: 10.17072/1994-3598-2019-3-12-19 

 


