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Thermal convection of a nanofluid in connected channels heated from below was studied theoreti-
cally. Thin channels with boundaries of high thermal conductivity were considered. Direct numerical
simulation was based on the set of partial differential equations derived with the help of Galerkin
method. The final system was solved by the method of finite differences. It has been shown that
normal thermodiffusion exerts principal influence on the formation of particular non-linear flop-over
oscillations. Cross-sections of concentration, velocity and temperature were obtained at various
heights in the channel. The form and period of these oscillations were analyzed with respect to su-
percriticality for different values of governing parameters. A quadratic dependence of viscosity on
concentration was taken into account. The period of oscillation was found to decrease with the
growth of this effect. As a result of the normalization procedure the general law for the period of os-
cillation has been found. Qualitative agreement between calculation and experiment has been

demonstrated.
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1. Introduction

For non-uniformly heated fluids, convective flows
occur due to the dependence of density on temperature
[1]. In the case of binary mixtures, the inhomogeneous
concentration distribution also plays a role in convec-
tion, and this gives rise to more complex behavior [2].
These effects are dependent on the temperature and
concentration gradients. In a mixture, the temperature
gradients are responsible for the occurrence of concen-
tration gradients (thermodiffusion). Thermodiffusion
can be considered as a cross effect in the general theo-
ry of Onsager [3]. The case where a positive tempera-
ture gradient creates a negative concentration gradient
of the heavier component is known as positive (nor-
mal) thermodiffusion.

In vertical connected channels heated from below,
positive thermodiffusion and thermoconvection to-
gether give rise to observed “flop-over” oscillations in
certain intervals of the Rayleigh number, where the ve-
locity of the fluid in the direction of the channel has
approximately a square-wave profile, Glukhov and
Putin [4]. The calculation of flop-over oscillations was
first carried out for binary mixtures in [5], where in
accordance with experiment the boundaries were con-
sidered to have high thermal conductivity compared to
the fluid.

In this paper, we investigate these flop-over oscil-
lations in thin connected channels for nanofluids with
heavy particles and viscosity dependent on concentra-
tion. Experiments have shown that concentration can
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have a significant contribution to viscosity for many
natural and artificial nanofluids [6, 7]. We suppose
that this dependence may be important in providing a
more accurate description of flop-over oscillations.

2. Statement of the problem

2.1. Geometry of set-up

Let us consider connected channels (convective
loop) oriented vertically and heated from below, as in
fig. 1. The channels have finite height h and half-
width d, with the condition h >> d.

g |
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Fig.1. Geometry of the problem and coordi-
nate system.
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The boundaries are assumed to have high thermal
conductivity, in accodance with experiments [4,5]. In
the experiments, this was achieved by embedding the
channels in a homogeneous metal block. The
temperature profile along the centre of the opaque
channels was determined using thermocouples. This
allowed the flow intensity along the centre of the
channel to be estimated quantatively. For small Ray-
leigh number, it was found that the velocity of the flu-
id was one dimensional, directed along the channel. At
the same time the fields of temperature and concentra-
tion were observed to be a function of all spatial coor-
dinates. It was established that the complexity of these
fields leads to a highly non-trivial time evolution of
this hydrodynamic system.

In our system, the z-axis is oriented vertically up-
wards, the x and y axes lie in the channel’s cross sec-
tion. The temperature difference between the top and
bottom of the channels is @. Gravity is directed verti-
cally downwards g = (0, 0,—g), see fig.1.

2.2. Basic equations

Now let us take the well-known generalized equa-
tions of thermal convection in the Boussinesq approx-
imation to describe the behavior of an incompressible
fluid in connected channels. This system includes the
generalized Navier-Stokes equation, mass conserva-
tion law, equations of heat and admixture transfer
[1,8]:

%+ AV U:—leJruAfUJrQ VoV U+

P

+Vvx Vxv +g BT —-6C v, (21)

88—?+ vV T = xAT, divi =0, (2.2)
%4— vV C =D AC+ AT . (2.3)

Here, U, p, Tand C are dimensional fields of velocity,
pressure, temperature and the concentration of the
heavier component. Parameters y, f, [ are positive
coefficients of thermal diffusivity, thermal expansion
and dependence of density on concentration, respec-
tively; D and « are the diffusion and thermodiffusion
coefficients; p is the average density of the fluid; g is
the gravitational acceleration; and 7 is the unit vector
oriented vertically upward.

The kinematic viscosity, v, we take to be dependent
on concentration quadratically [6], with the form:

v=v, 1+\C+ deZ , (2.4)
where Aq, & are positive dimensional parameters de-
pendent on the properties of the nanofluid; vo is the
kinematic viscosity of the pure liquid.

The sides of the channels are rigid therefore the ve-
locity vanishes on the boundaries. As a result of the
heating from below a linear temperature distribution
takes place on the boundaries 7o = — z&h + 6. The
unknown fields of velocity v and temperature T = Ty
+ T7in equations (2.1), (2.2) must satisfy to the fol-
lowing boundary conditions:

These account for the existence of non-slip and non-
penetration conditions on all sides of the channels, and
the high thermal conductivity of the boundaries.

Let us continue the numerical analysis of the equa-
tions (2.1)—(2.3) in terms of non-dimensional varia-
bles. We shall use following set of units during the
simulation: length [Ax, Ay, Az] — d; time [{] — d?/w;
velocity [v] — w/d; temperature [T] — @, concentration
[C] - B:®/ Bc; pressure [p] — pw?/d? The equations
of thermal convection in non-dimensional form can be
written as

(89—1;—# 9V 0 =-Vp+vAvi+2 VoV ¥ +

VX VxE +RP;LH T_C 5, (25)
r

oT

O L swvr=LAar, awi=o0, (26)
ot Pr
9C v o=t actear . @)
ot Sc
v=1+XC +£&C°. (2.8)

The following non-dimensional governing parameters
are used:

v, X D 3,
2
2 2
)\:Adﬁt_7€:§d Bt ,H:ﬁ,
B, B, d

where Ra, Pr and Sc are the Rayleigh, Prandtl and
Schmidt numbers respectively; & is the non-
dimensional thermodiffusion parameter; A and & de-
scribe the dependence of viscosity on concentration; H
is the non-dimensional height.

In the calculations, we use the straight trajectory

approximation for the velocity v = (0, 0, u(z,y,t)).

The form of wu(x,y,t) automatically satisfies the in-
compressibility requirement. As h >> d, we limit our
considerations to the vertical channels of the convec-
tive loop.
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The non-dimensional flux of matter is given by
J=-V C+eT .
The non-penetration boundary condition implies

=0.

(2.9)

n

We impose the condition that the net density flux
through the two channels is zero:

ff uV +u® dedy =0,

where the supefscripts denote the left and right chan-
nels correspondingly.

3. Mechanical equilibrium

For small Rayleigh number, a mechanical equilib-
rium state exists, where v =0 and 8/815 =0. The

non-dimensional temperature distribution at equilibri-
um is
T = - =41,
H

Accounting for the condition on flux and equation
(2.7), the concentration field is described by

C:

0

%+C‘O.

The integration constant C’O can be expressed in terms

of the mean concentration C_*O :

Let us emphasize the net flux of matter is equal to zero
in mechanical equilibrium.

4. Method of solution

In non-equilibrium states, we have 3D fields of
concentration, temperature and velocity, which in gen-
eral depend on time. The full concentration and tem-
perature fields can be writtenas C = Cy + C’and T =
To + T, where C”and T’ are the deviations from me-
chanical equilibrium. We reformulate the equations
(2.5)—(2.7) in terms of these deviations and solve nu-
merically.

To simplify the application of boundary condition
(2.9), we introduce the new function F = C + ¢T. The
associated boundary condition is

VF =0.

nlr
In the following calculations we omit the primes for
greater clarity. In the terms of the deviation fields the
equation system has the form

%:—@—FVALU—I-
ot 0z
rvw us M Gl oo, @
r
9T L OT _ L api 4.2)
ot oz Pr H
OF L OF L ap AT, @3
ot dz Sc Pr

The plane Laplace operator is used in equation (4.1)

* 9
= + —.
tar 9y

A

Experimental results [4] indicate the vertical distri-
bution of temperature can be written in terms of two
harmonic functions

v

T =T (z,y,t)sin
1 (,9,1) 7

Tz
+ T (z,y,t)cos|—|.
2 (2 y,1) [H]

Here T: and T are amplitudes dependent on the cross
section coordinates and time only. Considering the
symmetries of equations (4.1)-(4.3) we suggest the
following expansion for F:

T2
F = F(z,y,t) + F,(z,y,t) COS[E] +

21z
+F (z,y,t)cos| —]| .
3(@y.1) [H]

We integrate (4.1) over both channels to remove
from this equation the pressure gradient as it does not
affect buoyancy forces. For equations (4.2) and (4.3)
we apply the Galerkin procedure to find the equations
for amplitudes. The resultant system of partial differ-
ential equations for the amplitudes u, Ti, T2, Fi, F>
and F3; can be found in the appendix. The equation for
u involves only terms anti-symmetric for left and right
channels.

The equation system for amplitudes was solved
numerically by the method of finite differences in
combination with the explicit scheme [9]. One sided
and central differences were used to approximate the
time and spatial coordinate derivatives respectively,
including the convective and diffusive terms [10].
Numerical stability was achieved by choosing an ap-
propriate time step. The initial transitional flows in the
results were ignored and stable regimes were investi-
gated.

5. Results and discussion

In the course of direct numerical simulation, we
focused our attention on the regime of flop-over oscil-
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lations. The characteristic form of these oscillations is
illustrated in figure 2.

10

u

S

0 4000 t 8000

Fig. 2. The velocity at the center of the chan-
nel for 2 =0.2, £ = 0.5, mean concentration

¢, =0.1,Ra=53.

We observe that an approximately steady flow is
established with periodic sharp changes in direction.
The mechanism responsible for the observed effects is
mainly attributed to the horizontal thermodiffusive
separation of the mixture. From experiment [4], the
horizontal temperature gradients dd = 3 K/cm are
much  larger than the vertical gradients
@h=0.3 K/cm, which has a characteristic diffusive
separation time of h%D ~ 300 days. The horizontal
gradients have characteristic separation time d?/D ~ 3
hours, which coincides in order of magnitude with the
oscillation period of the ferrofluid from experiment
[4]. Considering first the channel with a flow moving
up, the fluid in the center has greater velocity and
temperature than the surrounding fluid (fig.3 (a)).
Therefore, as a result of thermodiffusion, the heavier
admixture diffuses towards the slower fluid layer on
the boundary. Over time, the channel with upwards
flow accumulates the heavier admixture, whilst the
opposing channel loses it. When the channel becomes
sufficiently heavy, the flow stops abruptly and changes
direction.

For our simulation the following values for the
governing set of parameters were used: Pr =10,
Sc=75, ¢ = 0.3 and H = 30.5. Between simulations

the parameters 4, &, 50 and Ra were varied in order to

analyze the effect of concentration dependence of vis-
cosity.

In figure 3 the channel with upward velocity is pre-
sented. Figure 3(a) shows the temperature deviation
profile at various heights along the channel. In our
theoretical model we neglect the horizontal parts of the
convective loop therefore the full temperature at the
ends of the channels must be continuous. At the bot-
tom of the channel the temperature profile has a small-
er amplitude than in the upper parts of the channel.
This behavior is expected as the inflow at the bottom
of the channel has just exited the colder channel.

The concentration deviation field at various heights
is illustrated in fig. 3(b). For z = h/4 and lower the
concentration is greater in the center of the channel
than near the boundaries. We can see that the concen-
tration of nanoparticles diffuses towards the bounda-
ries as fluid moves up the channel. Towards the top of
the channel (z = 3h/4) the concentration in the center
is smaller. These calculations support the thermodiffu-
sion mechanism outlined earlier in the text and in [5].

The aim of our work is to take into account the ef-
fect of concentration dependence of viscosity (2.8). It
was not necessary to consider this effect in molecular
solutions [5], but experimental data suggest that this
may be significant for nanofluids [6].

In our model, the parameters A and & determine the
strength of this dependence. The mean concentration

a _ also affects the convective flows of nanofluids. We

are interested in the period of flop-over oscillations for
different values of these parameters, as this is accu-
rately measured by experiment [4, 5]. We can obtain
from fig. 2 the dimensional value of oscillation period
. taking the viscosity v = 2.7-10® m?/s and channel
width d = 2 mm, we have z~ 1.6 hours, which is qual-
itatively verified by the result from experiment [4].
The quantitative data of period dependence on Ray-
leigh number from simulation are presented in fig. 4.
It is seen that the period of oscillations increases with
Rayleigh number (which is proportional to the temper-
ature difference) approximately linearly. Properties of
the nanofluid A and & are considered to be constant.
With the decrease of mean concentration the period
becomes greater in agreement with experiment [4].
The threshold of flop-over oscillations depends on the
mean concentration, 4 and & Flop-over oscillations
start for each mean concentration at a different critical
Rayleigh number Rac, which are the lowest values of
Ra in fig. 4. Let us attempt to find a universal law for
these dependences.

To visualize final data we introduce supercriticality
1 = (Ra— Rac)/Rac. By plotting the period against su-
percriticality for each mean concentration value we
produce a generalized law (fig. 5).
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Fig. 3. The fields of temperature (a) and concentration (b) in a cross section of the channel on different heights for
A1=0.2, £ = 0.5, mean concentration (70 =0.1, Ra=56.

== e =0 ’ ' ' The linear trend line in fig.5 is given by:
Tlor=02,6=05,C,=0.1
60001, 3 =02, ¢=05,C, =02 1 (1) = 7514 +3.0 -10°.
5000+ g . The law suggests that, for a given nanofluid, there is a
1 minimum period for flop-over oscillations regardless
4000} | % i of mean concentration. For our parameters, this is ~
3.10% The period of flop- over oscillation in a given
3000ke 5 ‘ | | Ra | nanofluid (constant Sc, Pr, and &) for small values of
50 55 60 65 70 75 supercriticality can to a good approximation be de-

scribed as having a linear dependence on &, a conven-
ient parameter to measure in experiments. The flop-
over regime’s dependence on concentration must be
contained in the critical value of temperature @, =

o4, & 50,...). Our numerical results so far suggest

Fig. 4. Non-dimensional period of oscilla-
tions against Rayleigh number for different
values of parameters.

7000
-

6000

@, increases with C_‘“. Many further simulations would

5000 have to be performed to determine a more explicit
form of @,; however its value is easily attainable from
experiment.

Though the model provided by this paper allows

for a description of flop-over oscillations and depend-

4000

L . . ..
: ! ence on Rayleigh number and mean concentration it is

2000 : . -
0 01 02 03 04 05 by no means complete. In this simulation we increased
Fig. 5. Normalized period of oscillations against Ray-  the Rayleigh number (experimentally realized by in-

leigh number for some values of parameters. creasing the temperature difference) without changing
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other parameters dependent on temperature difference
(e.9. 4, & C,). Further research may wish to take into

account the temperature dependence of the other gov-
erning parameters. Possible future work could even in-
clude varying the Schmidt number with potential con-
centration dependence.

6. Conclusion

Non-steady thermal convection of a nanofluid in
connected channels with boundaries of high heat con-
ductivity was investigated theoretically guided by ex-
periment. In our model we assume the liquid moves
predominantly vertically, adjacent to heat-conducting
boundaries. We suggest that the separation of compo-
nents in the horizontal plane by thermodiffusion is re-
sponsible for the complex “flop-over” oscillatory re-
gime. Our direct numerical simulation based on
hydrodynamic equations for the convective loop is in
qualitative agreement with the results of experiments

[4, 5]. The simulations in this paper have demonstrat-
ed that the introduction of concentration dependent
viscosity clearly affects the period of flop-over oscilla-
tions in a convective loop. This brings numeric simula-
tions qualitatively in line with the results of experi-
ments on nanofluids.

We are grateful for the financial support of the
scholarship provided by British Petroleum. We thank
the University of Oxford’s Career Service and the In-
ternational Department at Perm State University for
providing the research opportunity.

Appendix

The following final partial differential equation
system gives the time evolution for amplitudes
Tax vy, 1), Ta(x, y, 1), wx, y, 1), Fux,y, 1), Fa(x,y, 1),
Fs(x, y, t). After solving for these amplitudes, we re-
turn to the full values of temperature, velocity and
concentration.

9 —  — 2HRa
U _liia0 160, 55 aur l+eT —ZF|+
12 Pro 2
1 ‘ ‘ 4
+€l[§] 2F + F! +F —2¢FT, +<" T' + 1} — 3—5;] 3E+F TA u+
+| 2B VE + EVE + EVE, —= TVE, +EVT, +2 TVT +T,VT, —
[E] 3 TVE +EVT — TVE +EVT VLu},
3T -
oT umw 1 T ’ 4du oT, umw 1 7T2
T = — AT | —=| T|+ ==, 2 2T = — AT —|—| T,
ot H * rl “ 1t H) ! H ot H ' Pr| ** |H| ?
OF 2u 1 3e - OF,  16u c - (=Y
_17_}7;:_ L‘Fl'+ ALT17_ 1 —F - 3:_ALT;7_ Tz T ol 2
ot H S 7 Pr H ot 3H Pr H Sc|H
OF 4du 1 ’]T2 4e 7r2 0 . .
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