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Проведено численное моделирование формирования дорожки Кармана за круговым цилин-

дром в неустойчиво стратифицированной жидкости. Исследуется влияние термической 

стратификации на характеристики вихревого следа при различных числах Рейнольдса и 

Ричардсона. Рассматривается система уравнений Навье−Стокса в приближении Буссинеска, 

учитывающая эффекты плавучести в неустойчиво стратифицированной среде. Численное 

решение получено методом конечных разностей с использованием схемы расщепления по 

физическим процессам. Показано, что при наличии неустойчивой стратификации происхо-

дит интенсификация вихреобразования и изменение геометрических характеристик дорож-

ки Кармана по сравнению с однородной жидкостью. Выявлено, что конвективная неустой-

чивость, обусловленная распределением плотности, приводит к возникновению вторичных 

структур в вихревом следе. Показано, что с увеличением числа Ричардсона происходит ка-

чественная перестройка течения от регулярной дорожки Кармана к сложному хаотическому 

режиму с многомасштабными вихревыми структурами. 
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Numerical simulation of a Kármán vortex street formation behind a circular cylinder in an unsta-

bly stratified fluid was performed. The influence of thermal stratification on the vortex wake char-

acteristics at different Reynolds and Richardson numbers is investigated. The system of Navier–

Stokes equations in the Boussinesq approximation, which accounts for buoyancy effects in an un-

stably stratified medium, is considered. The numerical solution was obtained by the finite differ-

ence method using a splitting scheme for physical processes. It is shown that in the presence of un-

stable stratification, vortex formation intensifies and the geometric characteristics of the Kármán 

vortex street change compared to a homogeneous fluid. It has been found that convective instabil-

ity, caused by the density distribution, leads to the emergence of secondary structures in the vortex 

wake. It is shown that with an increase in the Richardson number, a qualitative restructuring of the 
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flow occurs: from a regular Kármán vortex street to a complex chaotic regime with multiscale vor-

tex structures. 
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1. Введение 

Явление периодического срыва вихрей за кру-

говым цилиндром, обтекаемым потоком вязкой 

жидкости, известное как дорожка Кармана, пред-

ставляет собой одну из фундаментальных проблем 

гидродинамики [1, 2]. Вихревая дорожка за телами 

возникает в широком диапазоне чисел Рейнольдса 

и является характерной особенностью течений за 

плохообтекаемыми телами. Исследование динами-

ки вихревых структур в следе за круговым цилин-

дром остаётся актуальной задачей как с фундамен-

тальной, так и с прикладной точки зрения [3]. В 

работе [3] проведен обширный обзор работ по ди-

намике вихрей в следе за цилиндром, системати-

зировав знания о режимах вихреобразования в за-

висимости от числа Рейнольдса. 

Связь между частотой срыва вихрей и числом 

Рейнольдса описывается числом Струхаля, кото-

рое для дорожки Кармана в однородной жидкости 

демонстрирует характерную зависимость от ре-

жима течения [4, 5]. В работе [5] впервые детально 

изучено развитие турбулентных следов из вихре-

вых дорожек, установив основные закономерности 

перехода между различными режимами. Экспери-

ментальные и численные исследования показали, 

что с увеличением числа Рейнольдса происходит 

последовательная смена режимов течения: от ла-

минарного периодического вихреобразования к 

трёхмерным неустойчивостям и, в конечном счёте, 

к турбулентному следу [6–8]. Переход к турбу-

лентности в следе за круговым цилиндром обу-

словлен развитием трёхмерных неустойчивостей, 

детально исследованных в работах [9, 10]. 

Значительный практический интерес представ-

ляет изучение вихревых следов в стратифициро-

ванных средах, поскольку такие течения широко 

распространены в природе – в атмосфере и океане 

[11, 12]. Здухов и Хромов [11] исследовали обра-

зование вихревых дорожек за препятствиями в ат-

мосфере, продемонстрировав важность учёта стра-

тификации для понимания атмосферных 

процессов. В стратифицированной жидкости тече-

ние характеризуется дополнительным безразмер-

ным параметром – числом Ричардсона, которое 

определяет относительную важность силы Архи-

меда по сравнению с инерционными силами. 

Влияние стратификации на характер течения за 

телами было предметом многочисленных экспе-

риментальных и теоретических исследований. В 

работе [13] изучены турбулентные следы в линей-

но стратифицированном потоке за сферой, выявив 

существенное изменение структуры следа при 

наличии стратификации. Структура ближнего сле-

да за сферой, движущейся горизонтально в стра-

тифицированной жидкости рассмотрена в [14]. 

Показано, что стратификация приводит к подавле-

нию вертикального движения и изменению харак-

теристик вихревых структур. В работе [15] экспе-

риментально исследовано линейно страти-

фицированное течение за горизонтально располо-

женным круговым цилиндром, установив ключе-

вые особенности поведения вихревого следа в за-

висимости от степени стратификации. 

Особый интерес представляет случай неустой-

чивой стратификации, когда лёгкая жидкость 

находится под тяжёлой. В этой ситуации конвек-

тивная неустойчивость может существенно влиять 

на динамику вихревых структур, приводя к значи-

тельной интенсификации процессов перемешива-

ния [16–18]. Здухов [16] теоретически и экспери-

ментально исследовал вихреобразование в 

стратифицированной жидкости, обнаружив каче-

ственные изменения в характере течения. Работы 

Гольдина и Ступишина [17, 18] посвящены чис-

ленному моделированию взаимодействия вихре-

вых структур со стратифицированной средой, где 

показано, что стратификация оказывает определя-

ющее влияние на эволюцию вихрей. 

Современные экспериментальные методы ви-

зуализации позволяют детально исследовать 

структуру течений в стратифицированных средах. 

В работе [19] проведено экспериментальное ис-

следование картины течения вокруг полосы, рав-

номерно движущейся в непрерывно стратифици-

рованной жидкости, выявив тонкую структуру 

вихревого следа и внутренних волн. В экспери-

менте [20] исследованы стратифицированные сле-

ды за движущимися телами и показано сложное 

взаимодействие между вихревыми структурами и 

внутренними волнами. 

Целью настоящей работы является численное 

исследование формирования и эволюции дорожки 

Кармана за круговым цилиндром в неустойчиво 

стратифицированной жидкости. Рассматривается 

влияние термической стратификации на характе-

ристики вихревого следа, частоту срыва вихрей и 

пространственную структуру течения. Особое 

внимание уделяется роли конвективной неустой-
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чивости в формировании вторичных структур и 

интенсификации процессов вихреобразования. 

2. Постановка задачи 

Рассматривается двумерное обтекание непо-

движного кругового цилиндра диаметром D  не-

сжимаемой вязкой жидкостью в прямоугольной 

полости длиной 30
x

L D  и высотой 15
y

L D  

(рис. 1). Набегающий поток направлен справа 

налево против оси x  и имеет начальную скорость 

U
 . Ось y  направлена вертикально вверх. Пред-

полагается, что полость подогревается снизу, в ре-

зультате формируется неустойчивая вертикальная 

стратификация жидкости. 

 

Рис. 1. Схематическое изображение геометрии 

задачи:1 – входная граница, 2 – выходная грани-

ца, 3  – верхняя и нижняя границы 

Неустойчивая стратификация создаётся путём 

поддержания постоянной температуры на верхней 

и нижней границах расчётной области, причём 

температура нижней границы h
T  превышает тем-

пературу верхней границы c
T , что приводит к кон-

вективной неустойчивости. Характерный градиент 

температуры  

h c

y

T T

L



  

определяет степень стратификации среды. 

Движение жидкости описывается системой 

уравнений Навье-Стокса в приближении Бус-

синеска, дополненной уравнением переноса тепла:  
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где ( , )u vu  − вектор скорости жидкости, t  − 

время, p  − давление, T  − температура, 0
  − ха-

рактерная плотность,   − кинематическая вяз-

кость,   − коэффициент температуропроводности, 

g  − ускорение свободного падения,   − коэффи-

циент теплового расширения, 0
( ) / 2

h c
T T T   − 

средняя температура, 
y

e  − единичный вектор 

вдоль оси y . 

В приближении Буссинеска плотность жидко-

сти считается постоянной везде, кроме слагаемого 

с силой Архимеда, где учитывается её зависимость 

от температуры: 

 0 0
1 .T T       

На входной границе ( x
x L ) задаются условия 

равномерного потока: 

0
, 0, ,u U v T T y


     

где начальное распределение температуры соот-

ветствует линейной стратификации. На выходной 

границе ( 0x  ) ставятся мягкие граничные усло-

вия: 

0, 0, 0.
u v T

x x x

  
  

  
 

На верхней (
y

y L ) и нижней ( 0y  ) границах 

задаются условия проскальзывания для скорости и 

постоянные температуры: 

0
0, 0, , .| |

yy h y L c

u
v T T T T

y
 


   


 

На поверхности цилиндра 
2 2 2

( , / 2)x y R R D    выполняются условия 

прилипания и теплоизоляции: 

0, 0, 0,
T

u v
n


  


 

где n  − внешняя нормаль к поверхности цилин-

дра. 

В начальный момент времени задаются одно-

родное поле скорости и линейное распределение 

температуры: 

0
( , 0), .U T T y


  u  

Введём характерные масштабы: для длины − 

диаметр цилиндра D ; для скорости − скорость 

набегающего потока U
 ; для времени − /D U

 ; 

для температуры − разность температур 

h c
T T T   . Безразмерные переменные обознача-

ются звёздочкой: 

* * *

* *

2
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В безразмерных переменных (опуская звёздоч-

ки для краткости) система уравнений (1)–(3) при-

нимает вид: 

0, u  (4) 



52 A. О. Иванцов 

21
( ) ,

y
p Ri T

t Re


       



u
u u u e  (5) 

21
.

T
T T

t Re Pr


   

 
u  (6) 

Задача характеризуется тремя безразмерными 

параметрами: 

Число Рейнольдса, /Re U D 


 , определяет 

соотношение инерционных и вязких сил. В данной 

работе исследуется диапазон 20 200Re   , охва-

тывающий ламинарный и переходный режимы те-

чения; 

Число Ричардсона, 2 2
/Ri g D U


 , характе-

ризует отношение силы Архимеда к инерционным 

силам. Положительные значения 0Ri   соответ-

ствуют неустойчивой стратификации (лёгкая жид-

кость под тяжёлой). В расчётах варьируется диапа-

зон 0 1Ri   ; 

Число Прандтля, /Pr   , представляет со-

бой отношение кинематической вязкости к темпе-

ратуропроводности. Для большинства расчётов 

принято значение 1Pr  . 

3. Устойчивость обтекания  

цилиндра 

Рассматриваемая задача характеризуется взаи-

модействием двух типов неустойчивостей: гидро-

динамической неустойчивости обтекания цилин-

дра, приводящей к периодическому срыву вихрей, 

и конвективной неустойчивости, обусловленной 

неустойчивой термической стратификацией. Рас-

смотрим известные результаты линейного анализа 

для каждого из этих механизмов. 

Для течения за круговым цилиндром в одно-

родной жидкости ( 0Ri  ) линейный анализ 

устойчивости стационарного симметричного ре-

шения позволяет определить критическое число 

Рейнольдса, при котором начинается периодиче-

ский срыв вихрей [1,14]. Классические экспери-

ментальные и численные исследования [7,19] по-

казали, что неустойчивость развивается при 

47
cr

Re  , когда стационарная пара симметричных 

вихрей в ближнем следе теряет устойчивость по 

отношению к двумерным возмущениям. 

При cr
Re Re  течение остаётся стационарным 

и симметричным относительно оси x . При 

cr
Re Re  реализуется режим периодического вих-

реобразования с характерной частотой, определя-

емой числом Струхаля: 

,
fD

St
U



  

где f  − частота срыва вихрей. 

Для диапазона 50 150Re    число Струхаля 

рассчитывается по эмпирической формуле [3]: 

19.7
0.198 1 .St

Re

 
  

 
 

При дальнейшем увеличении числа Рейнольдса 

( 180 200Re   ) развиваются трёхмерные не-

устойчивости [14, 16], приводящие к переходу к 

турбулентности. 

Линейный анализ трёхмерной устойчивости 

двумерной дорожки Кармана, выполненный в [14], 

показал, что существуют два различных типа 

трёхмерной неустойчивости с разными характер-

ными длинами волн в направлении, перпендику-

лярном плоскости течения. Критические значения 

числа Рейнольдса для этих неустойчивостей со-

ставляют 
3 ,

188
D A

Re   и 
3 ,

259
D B

Re  . 

В отсутствие внешнего течения ( 0U

 ) не-

устойчиво стратифицированный горизонтальный 

слой жидкости, подогреваемый снизу, теряет 

устойчивость при достижении критического числа 

Рэлея [18]. Рассмотрим слой толщиной H  с гра-

ничными условиями свободной поверхности (ну-

левые касательные напряжения) на верхней и 

нижней границах, которые используются в данной 

работе. 

Линейная теория устойчивости приводит к сле-

дующему критическому значению числа Рэлея для 

возникновения конвективной неустойчивости: 

3 4
27

657.5,
4

cr

g TH
Ra

 




    

где H  − характерная высота слоя (в нашей задаче 

y
H L ). 

Число Рэлея связано с числом Ричардсона со-

отношением: 

2

4

.
H

Ra Ri Re Pr
D

 
  

 
 

Для используемых в расчётах параметров 

( 15
y

L D , 1Pr  , 75Re  ) критическому числу 

Рэлея соответствует критическое число Ричардсо-

на: 

6

2 4
2.65 10 .

( / )

cr

r

y

c

Ra
Ri

Re Pr L D


  

 
 

Полученное значение 
cr

Ri  является малым, что 

указывает на вероятность высокой чувствительно-

сти стратифицированной системы к конвективной 

неустойчивости (даже при малых Ri  система не-

устойчива). При превышении этого порога в си-

стеме отчета, движущейся со скоростью потока, в 

слое возникают конвективные ячейки с характер-

ным горизонтальным размером порядка высоты 

слоя. Однако, интенсивное течение быстро выно-

сит нарастающие возмущения за пределы рассмат-

риваемой области. В результате течение остаётся 
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плоскопараллельным даже при значительных 

надкритичностях ( cr
Ri Ri ).  

В рассматриваемой задаче присутствуют оба 

типа неустойчивостей одновременно. Их взаимо-

действие приводит к качественно новым эффек-

там, которые не могут быть описаны простой су-

перпозицией независимых решений. Конвективная 

неустойчивость модифицирует поле плотности в 

вихревом следе, что через силу Архимеда влияет 

на динамику вихрей. В свою очередь, вихревое те-

чение интенсифицирует перенос тепла и изменяет 

характер развития конвективной неустойчивости. 

Важно отметить, что линейная теория не может 

предсказать нелинейные режимы взаимодействия 

неустойчивостей, которые реализуются при ко-

нечных амплитудах возмущений. Для исследова-

ния этих режимов необходимо прямое численное 

моделирование полной нелинейной системы урав-

нений, что и является целью настоящей работы. 

4. Методика численного  

моделирования 

Численное решение уравнений (4)–(6) проведе-

но методом конечных объёмов с использованием 

разнесённой сетки. Для дискретизации конвектив-

ных членов применяется схема второго порядка 

точности QUICK (Quadratic Upstream Interpolation 

for Convective Kinematics). Диффузионные члены 

аппроксимируются центральными разностями 

второго порядка точности. Временная дискретиза-

ция осуществляется по неявной схеме второго по-

рядка. 

Связь полей скорости и давления обеспечива-

ется алгоритмом SIMPLE (Semi-Implicit Method for 

Pressure-Linked Equations). На каждом временном 

шаге выполняется итерационная процедура до до-

стижения заданной точности по невязке уравнений 

(
4

10


 для всех полей). 

Как отмечено выше, расчётная область пред-

ставляет собой прямоугольник длиной 30
x

L D  и 

высотой 15
y

L D . Необходимо отметить, что без-

размерные параметры задачи не зависят от пара-

метров расчетной области. Следовательно, наблю-

даемые физические явления не будут зависеть от 

ее размеров в случае, если она достаточна велика, 

т.е. x
L D , 

y
L D . Вычислительный домен 

дискретизируется неравномерной структуриро-

ванной сеткой с сгущением вблизи цилиндра и 

границ области. Типичный размер сетки составля-

ет 800 400  узлов. Шаг по времени выбирается из 

условия Куранта−Фридрихса−Леви: 

0.01
.

D
t

U


   

Важными характеристиками обтекания цилин-

дра являются силы, действующие на него со сто-

роны потока. Вычисляются две компоненты ре-

зультирующей силы: сила сопротивления D
F  (в 

направлении набегающего потока вдоль оси x ) и 

подъёмная сила L
F  (в перпендикулярном направ-

лении вдоль оси y ). 

Полная сила, действующая на цилиндр, опре-

деляется интегрированием тензора напряжений по 

поверхности цилиндра: 

,
S

dS  σ nF  

где σ  − тензор напряжений, n  − внешняя нормаль 

к поверхности цилиндра, S  − поверхность цилин-

дра. 

Проектируя полную силу на оси координат, 

получаем: 

2 ,

2 ,

y

L x

x

y y

D x

S

S

F n

F

u u v
pn n dS

x y x

u v v
pn n dS

y
n

x y





    
   

   


   

 

 



   


  

    
  

    





 

где x
n  и 

y
n  − компоненты вектора нормали. 

Первые слагаемые в этих выражениях пред-

ставляют собой вклад от давления (форма сопро-

тивления), а вторые − вклад от вязких напряжений 

(сопротивление трения). 

Для сравнения с экспериментальными данными 

и результатами других численных исследований 

силы выражаются в безразмерном виде через ко-

эффициенты сопротивления и подъёмной силы: 

2

0

2

0

2
,

2
,

D

D

L

L

F
C

U D

F
C

U D













 

где в двумерном случае в качестве характерного 

масштаба для нормировки силы используется диа-

метр цилиндра D , что соответствует силе, дей-

ствующей на единицу длины цилиндра.  

Проведено исследование сеточной сходимости 

численного решения. В качестве контрольного па-

раметра было выбрано значение коэффициента со-

противления D
C  при 100t  . Результаты тесто-

вых расчётов на сетках различных размеров 

показали, что при уменьшении характерного раз-

мера расчётной сетки в 1.5 и 2 раза наблюдается 

монотонное уменьшение контрольного параметра 

на 5% и 11% соответственно. Увеличение харак-

терного размера сетки в 1.5 раза приводит к изме-

нению коэффициента сопротивления менее чем на 

1%. Полученная слабая зависимость решения от 

дальнейшего сгущения сетки свидетельствует о 

достижении асимптотической сходимости и поз-

воляет сделать вывод о достаточной разрешающей 

способности базовой расчётной сетки для адекват-
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ного моделирования рассматриваемых физических 

процессов. 

5. Результаты моделирования 

Для проверки достоверности численной модели 

первоначально проведены расчёты обтекания кру-

гового цилиндра в однородной жидкости ( 0Ri  ) 

при различных числах Рейнольдса. Результаты 

моделирования развития неустойчивости показаны 

на рис. 2. При 40
cr

Re Re   наблюдается стацио-

нарное симметричное обтекание с парой стацио-

нарных вихрей за цилиндром (рис. 2, а). При 

70Re   формируется характерная дорожка Кар-

мана с периодическим срывом вихрей (рис. 2, б). 

При дальнейшем увеличении числа Рейнольдса до 

200Re   вихревой след становится более протя-

жённым (рис. 2, в). 

 
(а) 

 
(б) 

 
(в) 

Рис. 2. Поле модуля скорости при 0Ri  , 

1Pr   и различных интенсивностях потока: 

(а) − 40Re  , (б) − 70Re  , (в) − 200Re   

Для количественной верификации модели вы-

числены интегральные характеристики обтекания. 

При периодическом срыве вихрей коэффициенты 

D
C и L

C  являются функциями времени. 

Коэффициент сопротивления ( )
D

C t  осцилли-

рует около среднего значения 
D

C  с амплитудой, 

значительно меньшей среднего значения (рис. 3). 

Коэффициент подъёмной силы ( )
L

C t  осциллирует 

с нулевым средним и амплитудой, сравнимой с от-

клонением 
D

C  от начального значения (рис. 4). 

Частота осцилляций ( )
L

C t  определяет частоту 

срыва вихрей и используется для вычисления чис-

ла Струхаля: 

,L
f D

St
U



  

где L
f  − частота колебаний подъёмной силы. 

Полученное значение числа Струхаля 

0.14 0.01St    при 70Re   хорошо согласуется с 

классическими экспериментальными данными [3]. 

Средний коэффициент сопротивления также нахо-

дится в хорошем соответствии с литературными 

данными. 

 

Рис. 3. Временная зависимость коэффициента со-

противления L
C  при 70Re  , 0Ri  , 1Pr   

 

Рис. 4. Временная зависимость коэффициента 

подъёмной силы L
C  при 70Re  , 0Ri  , 1Pr   

Результаты моделирования влияния неустой-

чивой термической стратификации на формирова-

ние дорожки Кармана представлены на рис. 5. При 
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фиксированном числе Рейнольдса 70Re   рас-

смотрено изменение структуры течения с увеличе-

нием числа Ричардсона от 0Ri  (однородная 

жидкость) до 0.054Ri   (сильная неустойчивая 

стратификация). 

 
(а) 

 
(б) 

 
(в) 

Рис. 5. Поле безразмерной температуры при 

Re = 70, Pr = 1 и различных интенсивностях 

нагрева: (а) − 0Ri  , (б) − 0.027Ri  , (в) – 

Ri = 0.054 

В случае однородной жидкости (рис. 5, а) тем-

пературное поле демонстрирует классическую 

картину конвективного переноса тепла вихрями 

дорожки Кармана. Изотермы вытягиваются вдоль 

линий тока, образуя характерную вихревую струк-

туру. Перенос тепла осуществляется преимуще-

ственно за счёт адвекции вихрями. 

При умеренной неустойчивой стратификации 

(рис. 5, б) наблюдается существенное изменение 

структуры температурного поля. Помимо основ-

ных вихрей дорожки Кармана, в следе возникают 

вторичные конвективные структуры, обусловлен-

ные неустойчивой стратификацией.  

При сильной неустойчивой стратификации 

(рис. 5, в) конвективная неустойчивость становит-

ся доминирующим фактором. Температурное поле 

характеризуется сложной многомасштабной 

структурой с интенсивным развитием вторичных 

конвективных течений. Вихри дорожки Кармана 

существенно деформируются под действием пла-

вучестных сил, что приводит к изменению их 

формы и траекторий движения. Наблюдается об-

разование восходящих струй горячей жидкости и 

нисходящих струй холодной жидкости, которые 

существенно модифицируют основное вихревое 

течение. 

 

Рис. 6. Поле модуля скорости при 0.11Ri  , 

1Pr  , 70Re   

Наличие неустойчивой стратификации приво-

дит к существенному изменению динамических 

характеристик обтекания. Сила Архимеда, дей-

ствующая на элементы жидкости с различной тем-

пературой, вносит дополнительный вклад в поле 

течения, что влияет на распределение давления и 

скорости вблизи цилиндра и, следовательно, на 

величины коэффициентов сопротивления D
C  и 

подъёмной силы L
C . 

Анализ зависимостей средних и амплитудных 

значений этих коэффициентов от числа Ричардсо-

на показывает следующие закономерности. С уве-

личением Ri  средний коэффициент сопротивле-

ния 
D

C  монотонно возрастает, что связано с 

дополнительным вкладом давления, обусловлен-

ного неоднородностью поля плотности. При 

0.054Ri   значение 
D

C  увеличивается примерно 

на 15% по сравнению со случаем однородной 

жидкости. Амплитуда колебаний подъёмной силы 

также возрастает с увеличением числа Ричардсона, 

что свидетельствует об интенсификации вихреоб-

разования под действием сил плавучести.  

Результаты численного моделирования позво-

ляют выделить три характерных режима взаимо-

действия гидродинамической и конвективной не-

устойчивостей в зависимости от числа Ричардсона. 

Режим I, ( 0.03Ri  ): Влияние стратификации 

слабое. Характеристики течения близки к случаю 

однородной жидкости (см. рис. 5, а). Конвектив-

ная неустойчивость проявляется лишь в неболь-

ших возмущениях температурного поля внутри 
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вихрей, не оказывая существенного влияния на 

структуру дорожки Кармана. 

Режим II, ( 0.03 0.1Ri  ): Умеренное влияние 

стратификации. Наблюдается формирование вто-

ричных конвективных структур в вихревом следе, 

которые, однако, не нарушают регулярного харак-

тера вихреобразования (см. рис. 5, в). Этот режим 

характеризуется слабым взаимодействием двух 

типов неустойчивостей с частичным изменением 

геометрических характеристик дорожки Кармана. 

Режим III, ( 0.1Ri  ): Сильное влияние стра-

тификации. Конвективная неустойчивость стано-

вится определяющей. Происходит качественная 

перестройка структуры течения с формированием 

сложных многомасштабных вихревых структур. 

Регулярность вихреобразования нарушается, и те-

чение приобретает хаотический характер 

(см. рис. 6). 

Переход между режимами не является резким и 

характеризуется постепенным изменением харак-

теристик течения.  

6. Заключение 

Проведено численное исследование формиро-

вания дорожки Кармана за круговым цилиндром в 

неустойчиво стратифицированной жидкости. Раз-

работана и верифицирована численная модель на 

основе полной системы уравнений Навье–Стокса в 

приближении Буссинеска. Показано хорошее со-

гласие расчётных характеристик обтекания с из-

вестными экспериментальными и теоретическими 

данными для случая однородной жидкости. 

Численное моделирование показало, что нали-

чие неустойчивой термической стратификации 

существенно влияет на структуру вихревого следа 

и динамические характеристики обтекания. Выяв-

лено формирование вторичных конвективных 

структур в вихревом следе, обусловленных взаи-

модействием гидродинамической и конвективной 

неустойчивостей. Показано, что с увеличением 

числа Ричардсона происходит качественная пере-

стройка течения от регулярной дорожки Кармана к 

хаотической конвекции с вихревыми структурами 

сложной формы формирующиеся вблизи выхода 

из расчетной области. 

Выделены три характерных режима взаимодей-

ствия неустойчивостей: режим слабого влияния 

стратификации ( 0.03Ri  ), режим умеренного 

влияния ( 0.03 0.1Ri  ) и режим доминирующей 

роли конвективной неустойчивости ( 0.1Ri  ). По-

казано, что средний коэффициент сопротивления 

монотонно возрастает с увеличением числа 

Ричардсона, увеличиваясь на 12–15% при перехо-

де от однородной жидкости к режиму сильной 

стратификации.  

Результаты работы представляют интерес для 

понимания физики течений в природных страти-

фицированных средах, таких как атмосфера и оке-

ан, где неустойчивая стратификация часто возни-

кает вблизи нагретых поверхностей или в областях 

с градиентом солёности. Полученные данные мо-

гут быть использованы для разработки упрощён-

ных моделей вихревых следов за телами в страти-

фицированных средах и оптимизации 

конструкций, эксплуатируемых в условиях терми-

ческой неоднородности. 

 

Работа выполнена при финансовой поддержке 

Министерства науки и высшего образования Рос-

сийской Федерации (тема № 121031700169-1). 
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