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Исследование посвящено разработке и применению упрощённой одномерной модели для 

описания размера комплексных гигроскопических частиц, образующихся в результате пар-

ной коагуляции однокомпонентного аэрозоля. Такие частицы характерны для рудничной 

атмосферы калийно-магниевых месторождений. Поскольку точное моделирование формы и 

внутренней структуры образующихся несферических агломератов с несколькими кристал-

лическими ядрами чрезвычайно трудоёмко, в работе предложены три варианта их прибли-

жения, позволяющих использовать простую базовую модель, изначально созданную для 

одиночной сферической частицы. 
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The study focuses on the development and application of a simplified one-dimensional model for 

describing the size of complex hygroscopic particles formed by means of pairwise coagulation of a 

single-component aerosol. Such particles are typical of the mine atmosphere of potassium-

magnesium deposits. Since accurate modeling of the shape and internal structure of the resulting 

nonspherical agglomerates with multiple crystalline cores is extremely labor-intensive, three ap-

proximation options are proposed in this paper, these allowing the use of a simple baseline model 

originally developed for a single spherical particle. 
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1. Введение 

Регулирование запылённости рудничной атмо-

сферы является одной из важных задач производ-

ственного процесса добычи калийно-магниевых 

солей [1–3]. Превышение уровня запылённости 

сверх предельно допустимой концентрации нега-

тивно влияет на работу производственного обору-

дования, здоровье рабочих [4] и окружающую сре-

ду, т.к. часть пыли переносится вентиляционными 

потоками из подземных выработок на поверхность 

в качестве отработанного воздуха [5]. 

На уровень запылённости рудника влияет мно-

жество факторов, в частности, физико-химические 

свойства пыли. Качественный состав рудничной 

пыли, как правило, определяется составом пласта, 

вмещающих пород и пород прослоек. Количе-

ственные соотношения компонентов пыли зависят 

от технологических процессов и крепости пород, 
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подвергающихся измельчению. Содержание ком-

понентов в пыли вследствие их различной твердо-

сти может быть иным, чем в массиве, однако ввиду 

сложности отбора для анализа их состава с допу-

стимой для практики точностью принимают анало-

гичным составу породы. Так, добыча калийной ру-

ды на рудниках Верхнекамского месторождения 

сопровождается выделением в атмосферу горных 

выработок значительного количества пыли, со-

держащей хлориды натрия и калия, а также не-

большого количества хлорида магния [1]. Основ-

ным отличительным свойством данных пород 

является гигроскопичность, которая проявляется в 

увеличении размера и массы частиц, когда влаж-

ность воздуха превышает критическое значение 

DRH (Deliquescence Relative Humidity). Изменение 

размера частиц, в свою очередь, влияет на динами-

ку пылевого аэрозоля - скорость коагуляции и 

продолжительность оседания частиц. 

В настоящее время для учета свойства гигро-

скопичности широкое распространение получили 

модели, построенные на основе модификаций 

уравнения Максвелла для конденсации и испаре-

ния пара на поверхности однокомпонентной сфе-

рической капли [6]. Для этого в уравнение вводит-

ся параметр активности воды, который учитывает 

понижение давления пара на поверхности капли 

при увеличении концентрации раствора в капле. 

Такие модели позволяют отобразить основные 

особенности процессов испарения капель и рас-

творения частиц мелкодисперсных аэрозолей мик-

ронного размера [7, 8]. Однако в силу заложенных 

в данные модели предположений, в частности о 

постоянстве плотности частицы и об отсутствии 

влияния кристаллического (нерастворённого) ядра 

на концентрацию раствора в капле, их применение 

ограничено влажностью воздуха выше критиче-

ского значения (DRH), т.е. для частиц, находящих-

ся в жидком состоянии. 

В работе [9] на основе уравнения Максвелла 

построена уточненная математическая модель, 

позволяющая описывать кинетику взаимодействия 

водорастворимой однородной и химически 

нейтральной аэрозольной частицы с влажным воз-

духом на всем этапе растворения частицы (т.е. с 

кристаллическим ядром и без него), а также про-

цесс испарения капли до момента кристаллизации. 

В отличие от предыдущих подходов, где эти ста-

дии разделялись искусственно [10], в модели [9] 

введено уравнение для эволюции кристаллическо-

го ядра и учтена зависимость концентрации рас-

твора от степени его растворения. Это обеспечива-

ет единое и непрерывное описание процессов 

растворения частицы и гигроскопического роста 

размера капли. На основе данной модели рассмот-

рены различные сценарии изменения состояния 

частицы в зависимости от её начальной степени 

растворения и относительной влажности окружа-

ющей среды. Показано, что предсказания моде-

ли [9] качественно и количественно согласуются с 

экспериментальными данными об эволюции раз-

мера частиц хлорида натрия в режимах увлажне-

ния и высушивания, а также с результатами изме-

рений размеров частиц в равновесном состоянии 

при увеличении и уменьшении относительной 

влажности воздуха. 

Параллельно с гигроскопическим изменением 

размера пылевых частиц происходит преобразова-

ние их размерного спектра (доли частиц в единице 

объёма аэрозоля, относящихся к каждому интерва-

лу размеров) благодаря коагуляции – процессу 

столкновения и слипания аэрозольных частиц. В 

результате таких объединений формируются ком-

плексные частицы несферической формы с не-

сколькими кристаллическими ядрами, которые 

также подвержены гигроскопическому изменению 

размера. В общем случае описание изменения 

формы таких агломератов с учетом неоднородно-

сти внутреннего кристаллического ядра является 

сложной задачей, требующей решения уравнений 

для пространственного распределения концентра-

ции и изменения границы раздела многофазных 

сред. Однако для моделирования эволюции раз-

мерного спектра аэрозоля в подземных выработках 

столь детальное описание кинетики растворения 

комплексных частиц оказывается чрезмерно тру-

доёмким и нецелесообразным. 

Целью данной работы является применение 

разработанной автором модели [9] для прибли-

женного описания растворения комплексных ча-

стиц, формируемых при парной коагуляции аэро-

зольных частиц одного состава. Для этого 

рассмотрены различные способы аппроксимации 

комплексной частицы – как сферическими части-

цами с одним кристаллическим ядром, так и в виде 

двух независимых частиц. 

2. Изменение размера одиночной 

частицы 

За основу математической модели гигроскопи-

ческого изменения размера комплексных частиц 

взята модель, предложенная в работе [9]. Исходная 

модель была разработана для описания эволюции 

размера изолированной сферической аэрозольной 

частицы радиусом *
r , содержащей водораствори-

мое кристаллическое ядро радиусом k
r , при поме-

щении её в воздух с относительной влажностью 

/ ( )
n

p p T
 

 . 

Здесь p
  - давление пара вдали от частицы, 

( )
n

p T
  - равновесное давление насыщенного пара 

при заданной температуре окружающего воздуха 

T
 . Схема частицы приведена на рис. 1. Здесь 

*
p  - давление на поверхности частицы, *

,T  0
r  -

 её температура и начальный радиус, n1 - число 
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молекул воды, 2 2
,

k d
n n  - число молекул растворя-

емого вещества, находящихся в кристаллическом и 

растворённом состоянии, соответственно. При 

этом общее количество частиц растворяемого ве-

щества постоянно, т.е. 2 2 2
const

k d
n n n   . 

Математические соотношения данной модели, 

записанные относительно температуры частицы 

*
T , количества молекул воды 1

n  и кристалличе-

ской соли 2k
n  в частице, приведённые к безраз-

мерной форме, имеют следующий вид: 

 

Рис. 1. Модель частицы 
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 (3) 

где для обезразмеривания переменных использо-

вались соотношения:  

2

0
ˆ /

f
t tD r , * * 0

ˆ /r r r ,  

* *
ˆ /T T T


 , * *

ˆ / ( )
n

p p p T


 ,  

1 1 2
ˆ /n n n , 2 2 2

ˆ /
k k

n n n , ˆ /
i i n

C C C . 

В результате образуются безразмерные комплексы 

величин: 

3 3

0 0

1 2

2 2 2

4 / 3 (4 / 3)
, ,n n a

b

r p r C N
k k

k T n n M

 


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f p p

r vL
k k k

n v D c T c v

 

 


    

Здесь t  - время; b
k  - константа Больцмана; 

, ,
n pn i

C C C  - массовая концентрация насыщенного, 

перенасыщенного и текущего раствора на поверх-

ности нерастворённого ядра частицы; a
N  - число 

Авогадро; 2
M  - молярная масса соли; 1 2

,v v  -

 объемы молекул воды и соли; ,
f d

D D  -

коэффициенты диффузии молекул воды в воздухе 

и растворённых молекул в растворе; 
p

c  - удельная 

теплоёмкость частицы;  - коэффициент тепло-

проводности влажного воздуха; L  - удельная теп-

лота парообразования/конденсации.  

Согласно данной модели, изменение количе-

ства молекул воды в частице 1
n обусловлено толь-

ко диффузионным потоком через её поверхность, 

который определяется разностью относительных 

парциальных давлений пара в окружающей среде 

  и на поверхности частицы *
/ ( )

n
p p T

  (1). Из-

менение количества кристаллического состояния 

растворяемого вещества 2k
n  также описывается в 

рамках диффузионной модели и зависит от кон-

центрации раствора на поверхности частицы 

i
C  (2). Кристаллическое ядро растворяется, если 

концентрация раствора на поверхности частицы 

ниже насыщенной, 1/
i n

C C  . Кристаллизация 

начинается только в пересыщенном растворе, т.е. 

pi n
C С . В промежуточном состоянии, когда 

,
i n pn

СC С    , возможно только изменение коли-

чества молекул воды в частице, за счёт которого 

меняется концентрация раствора: 

2 22

1 1 2 2 2

( )
.

( ( ) )

k

i

a k

n nM
C

N n v n n v




 
 

Изменение температуры частицы (3) вызвано вы-

делением тепла при конденсации влаги и поглоще-

нием тепла при её испарении. Дополнительно за 

счёт теплопроводности происходит теплообмен 

частицы с окружающим воздухом, в ходе которого 

температура частицы стремится уравняться с тем-

пературой окружающей среды T
 . Более подроб-

ное описание вывода уравнений данной модели 

представлено в работе [9]. 

В качестве входных параметров модели ис-

пользуется относительная влажность воздуха  , 

начальный радиус 0
r  и увлажнённость 

10 1 2 1
/ ( )x n n n   аэрозольной частицы, а также её 

химический состав, который характеризуется мо-

лярной массой 2
M , плотностью 2

 , растворимо-

стью в воде K  и активностью воды при различной 

массовой доле вещества в растворе ( )
w

a Y . Основ-

ная часть пылевых аэрозолей калийных рудников 

состоит из частиц хлоридов натрия, кали и магния. 

Соотношения для активности воды соответствую-

щих растворов, образующихся на поверхности ча-

стиц при их растворении, были построены на ос-

нове аппроксимации полиномом третей степени 

предсказаний модели AIOMFAC [11, 12] для фик-

сированной температуры окружающей среды. При 
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293.15T

 K данные соотношения принимают 

следующий вид: 

1 3

2

4 2 7 3

: ( ) 9.98 10 2.83 10

4.30 10 3.42 10

MgCl a Y Y

Y Y



 

 

    

   
 (4) 

1 3

4 2 7 3

: ( ) 9.94 10 2.46 10

1.44 10 7.24 10

w
KCl a Y Y

Y Y

 

 

    

   
 (5) 

1 3

4 2 6 3

: ( ) 9.99 10 5.03 10

1.29 10 1.04 10

w
NaCl a Y Y

Y Y

 

 

    

   
 (6) 

 

Рис. 2. Зависимость активности воды w
a  от 

массовой доли вещества Y : 1, 1' - 2
MgCl , 2 -

 NaCl, 3 - KCl. Точки - предсказания AIOMFAC 

модели [11]. Сплошные линии - аппроксимация 

уравнениями (4)–(6).  - экспериментальные 

данные для 2
MgCl [14] и NaCl, KCl [13] 

Из рисунка 2 видно, что предсказания AIOM-

FAC модели и соответствующие им уравнения (4)–

(6) хорошо согласуются с экспериментальными 

данными для хлоридов калия и натрия, представ-

ленными в работе [13]. Поскольку эксперимен-

тальные данные [14] для хлорида магния получены 

при 373T

 K, это может являться причиной 

наблюдаемого расхождения с предсказаниями 

AIOMFAC модели (линия 1 и маркеры 1') 

3. Изменение размера комплексной 

частицы 

Влажность и температура рудничной атмосфе-

ры в основном определяются соответствующими 

характеристиками воздуха, поступающего в руд-

ник для вентиляции, и свойствами горной породы, 

окружающей выработку [3, 15]. Данные характе-

ристики наиболее существенно зависят от времени 

года и могут меняться в довольно широком диапа-

зоне. Это приводит к тому, что частицы много-

компонентного полидисперсного пылевого аэро-

золя, формируемого в результате 

производственного процесса, будут находиться в 

различном агрегатном состоянии и иметь различ-

ную степень растворения. Процесс осложняется 

тем, что при столкновении таких частиц в резуль-

тате коагуляции могут образовываться новые ча-

стицы, различной формы, смешанного состава и 

агрегатного состояния, которые, в свою очередь, 

также будут подвержены гигроскопическому из-

менению размера. Так, для однокомпонентных ча-

стиц, находящихся на разной стадии растворения, 

возможно шесть видов столкновений, которые 

приводят к формированию четырех типов частиц, 

см. рис. 3.  

 
Рис. 3. Схема формирования частиц в резуль-

тате парной коагуляции однокомпонентного 

пылевого аэрозоля 

При взаимодействии частиц различного химиче-

ского состава ситуация значительно осложняется, 

так как наряду с различными агрегатными состоя-

ниями и размерами образовавшиеся комплексы 

будут содержать многокомпонентные растворы 

разной концентрации. 

В настоящей работе проведено моделирование 

гигроскопического изменения размера комплекс-

ных частиц, образованных в результате парной ко-

агуляции в приближении однокомпонентного пы-

левого аэрозоля. Для этой цели используется 

рассмотренная в разделе 2 модель эволюции раз-

мера изолированной аэрозольной частицы сфери-

ческой формы, содержащей одно водорастворимое 

кристаллическое ядро, см. рис. 1. Если при столк-

новении двух частиц хотя бы одна из них будет 

находиться в полностью растворённом состоянии, 

то образующуюся комплексную частицу с боль-

шой долей достоверности можно считать сфериче-

ской каплей или сферической частицей, содержа-

щей одно ядро, т.е. соответствующей 

ограничениям вышеупомянутой модели. Однако 

непосредственное применение данной модели не-

пригодно для случая столкновения частиц, каждая 

из которых имеет кристаллическое нерастворённое 

ядро. Чтобы решить эту проблему, в данной работе 

рассмотрены три варианта грубого приближения 

комплексной частицы (см. рис. 4), для которых 

возможно использование базовых уравнений рас-

смотренной выше модели. 
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В первом случае (см. рис.4, I) комплексная ча-

стица заменяется одной сферической частицей с 

двумя кристаллическими ядрами, радиусы которых 

равны исходным значениям сталкивающихся ча-

стиц (1) (2)
,

k k
r r , а температура, размер и концентра-

ция растворённой части предполагается общими 

для двух частиц.  

 

Рис. 4. Варианты замены комплексной частицы 

В начальный момент их значение задаются равны-

ми (1) (2)

* * *
(1 )T T T    , (1) (2)

1 1 1
n n n  , 

(1) (2)

2 2 2d d d
n n n  , где    массовая доля первой ча-

стицы. В этом случае в исходной математической 

модели уравнения (1) и (3) дополняются двумя со-

отношениями для количества молекул кристалли-

ческой соли (1)
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где j = 1, 2. 

Второе приближение (см. рис. 4, II) соответ-

ствует замене двух частиц с характеристиками 
( ) ( ) ( ) ( ) ( )

* 1 2 2 *
, , , , 1,2,

j j j j j

k d
r n n n T j   на единую частицу с 

эффективными радиусом *
r , мольной долей воды 

10
x  и средней температурой *

T   

 
1/3

( ) ( )

* 1 1 2 2

1,2

3
,

4

j j

j

r n v n v
 

 
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  (10) 
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1
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2 1
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n n
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( )
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1,2

1
,

2

j

j

T T

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где ( ) ( ) ( )

2 2 2

j j j

k d
n n n  . Такая замена позволяет ис-

пользовать исходную модель напрямую.  

Третий вариант (см. рис. 4, III) расчёта предпо-

лагает, что частицы после столкновения продол-

жают растворяться независимо друг от друга. При 

этом размер и степень растворения комплексной 

частицы определяется на основе соотноше-

ний (10)–(12). Система уравнений, составляющих 

модель, решалась численно методом Рунге–Кутты 

4-го порядка точности. 

4. Результаты моделирования 

На рисунке 5 представлены результаты расчета 

с помощью различных приближений (I, II и III) ки-

нетики растворения комплексной частицы, образо-

ванной столкновением двух частиц хлорида натрия 

с начальными радиусами )

0

(1
5r   мкм и 

)

0

(2
1  0r   мкм, имеющих различные начальные сте-

пени растворения (1)

10 1 1 2
/ ( ) 0.3,x n n n    

(2)

10
0.4x   и одинаковую температуру, совпадаю-

щую с температурой окружающей среды 
(1) (2)

* *
293.15T T T


   К. Влажность окружающе-

го воздуха 0.8  . 

Из рисунка 5 видно, что качественная картина 

растворения комплексной частицы для различных 

вариантов приближения одинакова: монотонное 

уменьшение количества кристаллической соли 2k
n  

сопровождается равномерным увеличением числа 

молекул воды 1
n  в частице. При этом времена рас-

творения кристаллических ядер s
t  различаются. В 

частности, в первом приближении более мелкая 

частица растворяется дольше, чем аналогичная по 

размеру частица в третьем приближении (рис. 

5, а, д, штриховые линии с номером 1).  

На рисунке 6 представлены зависимости эф-

фективного радиуса комплексной частицы от вре-

мени, рассчитанные для различных вариантов её 

приближенного представления. Как следует из 

данного рисунка, вариант III предсказывает более 

интенсивное изменение эффективного радиуса во 

времени. Максимальная относительная разность 

между предсказанием модели с вариантом аппрок-

симации комплексной частицы III и моделью с ва-

риантами аппроксимации I(II), составляет 

max / %
0

r r 10  . 
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Рис. 6. Зависимости эффективного радиуса ком-

плексной частицы от времени, предсказанные мо-

делью при различных вариантах аппроксимации 

частицы. Параметры расчёта соответствуют 

условиям рис. 5 

На основе разработанной модели изучено влия-

ние влажности окружающего воздуха, сочетания 

размеров коагулирующих частиц и их химического 

состава (общего для взаимодействующих частиц) 

на зависимость эффективного радиуса комплекс-

ной частицы от времени. На основе полученных 

данных найдены максимальные относительные от-

клонения max /
0

r r  между предсказаниями моде-

ли с различными представлениями комплексной 

частицы. В таблицу внесены наибольшие из трёх 

значений max /
0

r r  для рассмотренных сочетаний 

исследуемых параметров. 

Из таблицы следует (см. №№ 7–9), что при 

объединении крупной, почти сухой, частицы 

( (1)

0
10r   мкм и (1)

10
0.2x  ) с мелкой, почти раство-

рённой ( (12)

0
1r   мкм и (2)

10
0.9x  ), предсказания 

модели совпадают независимо от влажности окру-

жающего воздуха. В этом случае основная законо-

мерность кинематики растворения или испарения 

определяется крупной частицей (мелкая капля 

практически сливается с крупной). 

 

(а) 

 

(б) 

 

(в) 

 

(г) 

 

(д) 

 

(е) 

Рис. 5. Временная зависимость количества молекул воды n1, нерастворённых молекул хлорида натрия n2k и 

температуры T для различных вариантов приближения комплексной частицы: (а,б) - I, (в,г) - II, (д,е) - III 

приближения. 1 и 2 – номера частиц, формирующих комплексную частицу 
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Влияние влажности воздуха, размера и химиче-

ского состава частиц на максимальное расхож-

дение в предсказаниях зависимостей r(t) с помо-

щью различных вариантов аппроксимации 

комплексной частицы (I, II, III). 
( )

. ,
1

10
x 0 2  

( )
.

2

10
x 0 9 , 

( ) ( )

* *
.

1 1
T T T 293 15


    K 

№ 
(1)

0
r  

мкм 

(2)

0
r  

мкм 

  

% 

max /
0

r r , % 

NaCl KCl MgCl 

1 1 10 10 5.3  1.2 8.6 

2 1 10 40 0.0 1.4 0.1 

3 1 10 80 0.1 0.0 0.0 

4 5 5 10 4.2 3.3 6.1 

5 5 5 40 0.0 3.2 1.5 

6 5 5 80 2.5 0.0 0.0 

7 10 1 10 0.0 0.0 0.0 

8 10 1 40 0.0 0.0 0.0 

9 10 1 80 0.0 0.0 0.0 

В противоположном случае, при столкновении 

мелкой почти сухой частицы ( (1)

0
1r   мкм и 

(1)

10
0.2x  ), с крупной, содержащей небольшое кри-

сталлическое ядро ( (1)

0
10r   мкм и (2)

10
0.9x  ), 

наибольшее расхождение предсказаний модели в 

зависимости от способа аппроксимации комплекс-

ной частицы наблюдается при низкой влажности 

воздуха (см. № 1). При этом, как следует из 

рис. 7, а, зависимость * ( )r t , полученная на основе 

аппроксимации I наиболее сильно отличается от 

предсказаний, построенных с использованием ва-

риантов II и III, которые демонстрируют количе-

ственно одинаковое поведение. При повышении 

влажности воздуха данное различие постепенно 

исчезает (см. табл., №№ 2 и 3). 

Влияние вариантов приближения комплексной 

частицы проявляется также при соединении частиц 

одинакового размера, но с различной степенью 

растворения кристаллического ядра (см. №№ 4, 5). 

В этом случае предсказания модели с аппроксима-

цией I и II практически идентичные, а III – количе-

ственно отличается (см. рис. 7, б). При этом для 

хлорида калия при повышении влажности воздуха 

до 0.4   (до влажности, соответствующей рас-

творению) различие радиусов, вызванное способа-

ми представлении комплексной частицы, изменя-

ется незначительно, см. рис. 5, в. 

В целом, наблюдаемые различия в предсказа-

ниях трёх предложенных вариантов аппроксима-

ции комплексной частицы качественно совпадают. 

Количественное расхождение во всех рассмотрен-

ных случаях не превышает 8.6% от начального 

эффективного радиуса частицы. 

Таким образом, для инженерных расчётов, свя-

занных с оценкой эволюции размерного спектра 

частиц вследствие коагуляции, можно с одинако-

вой точностью использовать любой из предложен-

ных подходов. С точки зрения математической ре-

ализации наиболее простым является вариант II. 

 
(а) 

(б) 

 
(в) 

Рис. 7. Изменение радиуса комплексной частицы, 

описываемой I, II и III приближениями, при усло-

виях коагуляции, приведённых в таблице: а – № 1, 

б – № 4, в  № 5 

5. Заключение 

Предложены три варианта приближённого 

представления формы и структуры комплексных 

аэрозольных частиц, образующихся в результате 

парной коагуляции частиц одного химического со-

става. На их основе построены три варианта обоб-

щения модели [9], которая изначально была разра-

ботана для описания поведения одиночных частиц, 

на случай растворения и кристаллизации ком-

плексных частиц. Проведено моделирование испа-

рения и растворения таких частиц с различными 

начальными условиями. Установлено, что макси-

мальное расхождение между предсказаниями зави-

симостей *
( )r t  для трёх вариантов модели не пре-

вышает 10%, несмотря на качественные различия в 

кинетике растворения. Проведённое исследование 

позволяет заключить, что для инженерных расчё-
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тов эволюции размерного спектра аэрозольных ча-

стиц за счёт их коагуляции все три предложенных 

варианта аппроксимации могут быть использованы 

с сопоставимой точностью. Полученные результа-

ты являются теоретической основой для дальней-

ших исследований характеристик гигроскопиче-

ского изменения размера многокомпонентных 

агрегированных аэрозольных частиц. 
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