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Задача о вертикальном просачивании (снизу-вверх) порции смеси через массив пористой 

среды под действием постоянного перепада давления. Транспорт примеси моделируется в 

рамках MIM (mobile/immobile media) подхода. Процессы сорбции описываются нелинейной 

MIM моделью, учитывающей предел осаждения примеси на стенках пор. Фильтрация моде-

лируется в приближении Дарси–Буссинеска, что позволяет учитывать влияние силы тяжести 

и, как следствие, развитие концентрационной конвекции. Зависимость проницаемости от 

пористости даётся соотношением Козени–Кармана. Аналитически получено основное бес-

конвективное состояние. Задача о возникновении конвекции решалась численно, методом 

конечных разностей. Получены поля концентрации и возмущений функции тока, а также 

средний мгновенный профиль концентрации по направлению течения для разных моментов 

времени. Показано, как рост числа Рэлея–Дарси влияет на времена закачивания и выхода 

раствора из рабочей области, а также на кривую прорыва. 
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We consider a problem of vertical percolation (bottom-up) of a mixture portion through a porous 

medium array under constant pressure drop. Contaminant transport is modeled within the MIM 

(mobile/immobile media) approach. Sorption processes are described by a nonlinear MIM model 

accounting for the limit of contaminant deposition on pore walls. Filtration is modeled using the 

Darcy–Boussinesq approximation, which enables the inclusion of gravity effects and consequently 

the development of concentration convection. The permeability-porosity dependence is given by 

the Kozeny-Carman relation. The basic non-convective state was obtained analytically. The con-

vection onset problem was solved numerically using the finite difference method. The field of con-

centration and stream function perturbations were obtained, as well as the average instantaneous 

concentration profile along the flow direction at different time moments. It is demonstrated how the 
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growth of the Darcy–Rayleigh number affects the solution injection and breakthrough times, as 

well as the breakthrough curve. 
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1. Введение 

Важным направлением экспериментального 

изучения переноса примесей в пористых колоннах 

является определение феноменологических пара-

метров математических моделей. Основной метод 

заключается в подборе значений этих параметров 

таким образом, чтобы достичь максимального сов-

падения между экспериментальными данными о 

временной зависимости концентрации (кривой 

прорыва), измеренной в определённой точке ко-

лонны (обычно на выходе), и результатами чис-

ленного моделирования данного процесса. Для 

применения данного метода требуется, чтобы 

транспорт примеси оставался одномерным.  

Оценке параметров сорбции и влиянию на та-

кую оценку различных факторов была посвящена 

серия работ. Работа [1] посвящена оценке пара-

метров MIM модели на основе сравнения экспери-

ментальных данных с расчётом, методом решения 

обратной задачи были определены параметры для 

фильтрации натриевой соли через кварцевый песок 

и стеклянный гранулят. Подробное описание и те-

сты алгоритма, использовавшегося для оценки па-

раметров приведены в работе [2]. В работе [3] на 

основе экспериментальных данных исследована 

конвективная неустойчивость, возникающая при 

прокачке порции примеси через массив пористой 

среды в горизонтальном направлении. Работы 

[4, 5] посвящены исследованию возможности по-

давления неустойчивости с помощью пульсаций 

потока и наклона области. В процессе этой работы 

так же было показано, что в вертикальной области 

неустойчивость одномерного фильтрационного те-

чения присутствует всегда. В работе [6] продемон-

стрировано, что эта неустойчивость имеет Рэлей–

Тейлоровскую природу [7]. Оценены времена её 

возникновения экспериментально и с помощью 

численного решения задачи линейной устойчиво-

сти одномерной фильтрации, показано хорошее 

совпадение данных. Целью настоящей работы яв-

ляется прямое численное моделирование подобно-

го эксперимента для детального понимания меха-

низмов влияния концентрационной конвекции на 

транспорт примеси. 

Перенос вещества в пористых средах осложня-

ется его взаимодействием с твёрдой матрицей. 

Причины иммобилизации растворенного вещества 

могут различаться. Это может быть блокировка 

пористых каналов агрегатами, химическая реак-

ция, адгезия бактерий и т.д. Однако наиболее рас-

пространённым типом иммобилизации является 

адсорбция. Одним из наиболее популярных мето-

дов моделирования транспорта с иммобилизацией, 

является MIM (mobile/immobile media) подход [8]. 

Данный подход позволяет учесть тот факт, что 

часть растворенного вещества, переносимого жид-

костью, насыщающей пористую среду, может осе-

дать на стенках пор. Для этого в рамках подхода 

концентрация разделяется на две фазы мобильно-

сти. Мобильная фаза описывает концентрацию 

вещества, движущуюся вместе с потоком несущей 

жидкости, а иммобильная фаза – осевшую на стен-

ках пор. Фазовый переход между состояниями мо-

бильности примеси определяется кинетическим 

уравнением. В литературе описаны различные ва-

рианты таких уравнений и условия их применимо-

сти.  

Наиболее простой моделью является линейная 

MIM модель [9]. Данная модель применима при 

фильтрации смесей со слабой концентрацией. Для 

растворов высоких концентраций примеси лучше 

подходит нелинейная MIM модель [10]. Эта мо-

дель учитывает предельное значение иммобильной 

концентрации, при достижении которого процесс 

адсорбции прекращается. Это отражает тот факт, 

что на стенках пор бесконечное количество приме-

си оседать не может.  

Иммобилизация примеси на стенках пор при-

водит к увеличению гидравлического сопротивле-

ния пористой среды, то есть уменьшению её про-

ницаемости. Зависимость проницаемости от 

пористости может сильно различаться для разных 

пористых материалов. Наиболее простой и часто 

используемой зависимостью является соотноше-

ние Козени–Кармана [11]. Данное соотношение 

является модификацией Кармана для теории Козе-

ни, относящейся к теориям гидравлического ради-

уса, объясняющей проницаемость через геометри-

ческие свойства среды. Процесс фильтрации 

моделируется в приближении Дарси с учётом силы 

тяжести. При фильтрации порции смеси в верти-

кальной пористой колонне возникает неустойчивая 

стратификация в результате неоднородности плот-

ности флюида: тяжёлая жидкость оказывается над 

более лёгкой, что приводит к развитию неустойчи-

вости Рэлея-Тейлора.  

Статья состоит из 5 разделов. Во введении опи-

сан используемый подход и мотивация работы, во 

2 разделе – постановка задачи, 3 раздел посвящён 

методу решения, 4 раздел содержит результаты и 

их обсуждение, и в 5 разделе статьи приведено за-

ключение, содержащее основные выводы. 
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2. Постановка задачи 

 

Рис. 1. Схема задачи 

Задача решается в двухмерной постановке 

(рис. 1). Конечный объём смеси прокачивается че-

рез вытянутую в вертикальном направлении пря-

моугольную область (снизу-вверх), заполненную 

пористой средой. Соотношение сторон прямо-

угольника H/L=0.1. 

В рамках MIM подхода [8] уравнение транс-

порта примеси можно записать в следующем виде: 

 C Q

t

 
 


J ,                                           (1) 

где C, Q – объёмные концентрации примеси, нахо-

дящейся в мобильной и немобильной фазах, соот-

ветственно. Поток вещества J состоит из двух 

компонент диффузионной (закон Фика) и адвек-

тивной: 

 p
D C C D C C          J J W U , (2) 

где U = ϕW – вектор скорости фильтрации (соот-

ношение Дюпюи–Форхгеймера [12]), ϕ – текущая 

пористость, 
p

J  поток вещества через пору, D – 

эффективный коэффициент диффузии.  

Нелинейная MIM модель [10], учитывающая 

предел насыщения немобильной фазы до предель-

ной концентрации Q0, после достижения которой 

процесс адсорбции прекращается, содержит сле-

дующее кинетическое уравнение: 

  0
,

d

Q
Q Q C K Q

t



  


 (3) 

где α – коэффициент переноса примеси, Kd –

коэффициент распределения примеси. 

Закон Дарси с учётом силы тяжести: 

 
, ,

x
P g




 
    U g g e  (4) 

где κ(ϕ) – проницаемость среды, η – коэффициент 

динамической вязкости, g – вектор ускорения сво-

бодного падения, P – давление. Несущую жид-

кость считаем несжимаемой, следовательно, для 

неё справедливо соотношение: 

0 U . (5) 

Пористость чистой среды – ϕ0. Текущая пори-

стость ϕ линейно уменьшается с ростом концен-

трации иммобильной примеси: 

0
Q   . (6) 

Зависимость проницаемости от пористости 

описывается соотношением Козени–Кармана [11]: 

 
 

3

2
1


  





, (7) 

где γ – константа Козени–Кармана, которая может 

быть определена экспериментально для чистой 

среды. Зависимость плотности несущей жидкости 

от концентрации мобильной примеси запишем в 

приближении Буссинеска [12]: 

   0
1

C
C C    , (8) 

где ρ – плотность раствора, ρ0 – плотность чистой 

жидкости, βС – коэффициент концентрационного 

объёмного расширения. Используя формулу (7), из 

уравнения (4) можно получить закон фильтрации в 

приближении Дарси–Буссинеска 

 
 

 

0

0

,

.

C x
P g C

P P g L x

 
 





   

   

U e
 (9) 

Объединяя уравнения (1)–(7) и (9), получаем 

систему: 

 
 

  

 
 

 
 

0

0

3

02

,

,

, 0,

, .
1

d

C x

C Q
D C D C C

t

Q
Q Q C K Q

t

P g C

Q


 



 
 




    



 
      




  



      

  


U

U e U

 (10) 

Граничные условия: подача смеси заданной 

концентрации в рабочую область (при x=0), сво-

бодное вытекание (при х=L), непроницаемые для 

смеси боковые стенки, постоянный перепад давле-

ния между входом и выходом из колонны: 

   

   

   

 

00 0

*

0,

00

0,

,

1 ,

, 0,

, ,

0;

x xx x

x x yx Lx L y H

x x L

y
y H

U С f t

f t t t

U C

P P gL P P





 

 

  



 

  

   

   

 

J e

J e J e

U e

 (11) 
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где θ(t–t*) – функция Хевисайда, t* – время закачки 

порции смеси, C0 – концентрация порции смеси. 

Начальные условия: отсутствие примеси в об-

ласти и линейный профиль давления (с учётом 

гидростатического распределения): 

   

 

 0

, , 0 0, , , 0 0,

, , 0

.

C x y t Q x y t

P x y t

P P
P x g L x

L
 



   

  


   

 (12) 

2.1. Безразмерная система уравнений 

Обезразмерим систему уравнений (10). Введём 

следующие единицы измерения ‒ длины L, време-

ни L2/D, скорости ϕ0D/L, мобильной фазы концен-

трации C0, немобильной фазы концентрации Q0, 

проницаемости γ, давления P++P‒. Тогда (10) бу-

дет иметь вид: 
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 

 

 

     

 
 

 

0

3

02

1

,

1 ,

Pe Rp , 1,0 ,

div 0,

, 1 .
1

x x

qc
c q q c

t C t

q c c

q
a q c bq

t

p c

q


 



 


    



 
      

  

    


  



    



  


u

u e e

u

 (13) 

Здесь введены следующие безразмерные парамет-

ры: диффузионный аналог числа Пекле 

Pe = γ(P+ + P‒ ‒ ρ0gL)/ηDϕ0, число Релея–Дарси 

Rp = γ ρ0g βCC0L/ηDϕ0, коэффициент закупорки 

ζ = Q0/ϕ0, коэффициент адсорбции a = αC0L2/D, и 

коэффициент десорбции b = αKdL2/D. 

Система уравнений (13) в приближении слабой 

закупорки (ζ ≪ 1) [2] будет иметь вид: 

 

     

 
 

 

0

3

02

,
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div 0,

, 1 .
1

x x

c q c c
t C

q
a q c bq

t

p c

q



 


    



 
     

  


  



    


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

u

u e e

u

 (14) 

Задача решается в двумерной постановке: 

 

 

2 2

2 2

0

Rp

Pe ,

c c c c
c

t xx y

p c p c q

x x y y C t

 


 

   
   

  
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   

     

 (15) 

 1 ,
q

a q c bq
t


  


 (16) 

 

 

2 2

2 2

Rp
0,

Pe

p p p q p q
F

x x y yx y

c q
F c

x x




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    
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  
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  

 (17) 

где функции определены как 

 
 

 

 
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 

3
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0
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1

3
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1
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F
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
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 
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С безразмерными граничными условиями, ко-

торые могут быть получены из (11). Для концен-

трации: 

 

   

0 0

0

*

1

0

,

1 ,

0,

0, 0;

x xx x

x

x

y y h

c
u c u f t

x

f t t t

c

x

c c

y y



 





 


  


  






 
 

 

 (19) 

для давления: 

   

0

0 1, 1 0,

0, 0;

y y h

p x p x

p p

y y
 

   

 
 

 

 (20) 

Начальные условия: отсутствие какой-либо 

примеси внутри рабочей полости и линейный пе-

репад давления: 

   

 

, , 0 0, , , 0 0,

, , 0 1 .

c x y t q x y t

p x y t x

   

  
 (21) 

3. Метод решения задачи 

Задача решается численно методом конечных 

разностей. Численная схема первого порядка точ-

ности по времени и второго порядка точности по 

пространству. Используется сетка размером 

(N+1)×(M+1) с шагами xi = i∙hx, i=0,N; yj = j∙hy, 

j=0,M; tk = k∙τ, k=0,K; hx= 1/N, hy =hx,  τ =1/K. Та-

ким образом, поля основные неизвестных величин 

в дискретном виде можно записать: 

   

 

, ,

,

, , , , , ,

, ,

k k

i j k i j i j k i j

k

i j k i j

c x y t c q x y t q

p x y t p

 


 (22) 

Для решения уравнения (15) использовался метод 

переменных направлений [13]. Для решения на 

k + 1/2 шаге по времени, решалась следующая си-

стема: 
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1/2 1/2 1/2

, 1, , , , 1, ,
,

1.. 1, 1.. 1,

k k k k k k k

i j i j i j i j i j i j i j
A c B c C c F

i N j M

  

 
  

   
 (23) 

где коэффициенты 

 

, 1, 1,

, , ,2 2

, 2

0
,

Pe Rp
,

2 42 4

1 ,

1
2

k k k

i j i j i jk k k

i j i j i j

xx x

k

i j
kx
i j

p p
A c

hh h

a
B

Ch
ac b

  


  



 


   

  

 

 

 

 

, 1, 1,

, 2 2

, ,

, , 1 , 1

, , 12 2

,

, ,2

0
,

, , 1 , 1

2

Pe

22 4

Rp
,

4

Pe

22 4

21

1
2

Pe

22 4

k k k

i j i j i jk

i j

x x

k k

i j i j

x

k k k

i j i j i jk k

i j i j

y y

k

i j
k k

i j i j
ky
i j

k k k

i j i j i j

y

p p
C

h h

c
h

p p
F c

h h

ac b

c q
Ch

ac b

p p

h

 




 



 



 

 

 



 


   



 
   
 
 

 
    
 
   


 

, 12
.

k

i j

y

c
h



 
 
 
 

 (24) 

Уравнение на k+1 шаге по времени 

1 1 1

, , 1 , , , 1 ,
,

1.. 1, 1.. 1,

k k k k k k

i j i j j i j i j i j i j
A c B c C c F

i N j M

  

 
  

   
 (25) 

где коэффициенты 

 

 
 

 

 

 

, 1 , 1

, 2 2

1/ 2 1/ 2

1, 1,

, 2

0 ,

, 1 , 1

, 2 2

1, 1, 1/ 2

, 1,2 2

Pe
,

22 4

1 Rp
4

,
1

Pe
,

22 4

Pe

22 4

1

k k

i j i jk

i j

y y

k k

i j i jk

i j

xy

k

i j

k k

i j i jk

i j

y y

k k

i j i jk k

i j i j

x x

p p
A

h h

c c
B

hh

a

C ac b

p p
C

h h

p p
F c

h h

  


  

 



  

  

 

 

 

 

  




  


   


 


  

 
   
 
 



 

 

 

    

1/ 2

,2

0
,

1, 1, 1/ 2

1,2 2

,

,

0
, ,

2

1
2

Pe

22 4

2 .

1 1
2

k

i j
kx
i j

k k

i j i j k

i j

x x

k

i j
k

i j

k k

i j i j

a

c
Ch

ac b

p p
c

h h

ac b

q
C

ac b ac b


 



  









  



 
 
   

   
 

 
   
 
 




 

    
 

 (26) 

Уравнения (23) и (25) решаются методом диаго-

нальной прогонки [13]. 

Уравнение для иммобильной фазы концентра-

ции (16) в конечно-разностной форме (неявная 

схема): 

 

1

, ,1

,

,

.
1

k k

i j i jk

i j k

i j

a c q
q

ac b











 

  

Метод Ричардсона [14] относится к схемам яв-

ного типа и применяется для решений уравнений 

эллиптического типа. Уравнение (17) решалось в 

рамках метода Ричардсона. В дискретной форме 

может быть записано как: 

 

1

, , ,2 2

1, 1, , 1 , 1

2 2
1

,

m m k

i j i j i j

x y

m m m m

x i j x i j y i j y i j

p p f
h h

H p H p H p H p

 





   

   

  
      

  
  

   

 

1, 1,

,2 2

1, 1,

,2 2

, 1 , 1

,2 2

, 1 , 1

,2 2

1, 1, 1, 1,

, , ,

1
,

4

1
,

4

1
,

4

1
,

4

Rp

Pe 2 2

k k

i j i jk

x i j

x x

k k

i j i jk

x i j

x x

k k

i j i jk

y i j

y y

k k

i j i jk

y i j

y y

k k k k

i j i j i j i jk k k

i j i j i j

x x

q q
H F

h h

q q
H F

h h

q q
H F

h h

q q
H F

h h

c c q q
f F c

h h

 

 

 

 

   


 


 


 


 

  
   


 

 

 

 
0 ,

,

, 0 ,

,

3 1
.

1 1 1

k

i jk

i j k k

i j i j

q
F

q q

 

  

 
 

 
 

 


  

 (27) 

где δ – шаг по фиктивному времени. Для расчёта 

принято δ = hx
2/4. Итерационный процесс идёт до 

выполнения условия: 

1

, ,

,

,

, 0.

m m

i j i j m

i jm

i j

p p
p

p





   (28) 

Граничные условия в конечно-разностной форме 

для концентрации: 

    
    

1/ 2

0,

1/ 2

0, 1, 0, 1,

0, 1, 0, 0,

*

*

, 1,

, , 1

,0 ,1

Pe Rp
,

1 Pe Rp

0.. ,

1 ,

0 ,

, 0.. ,

, 1.. ,

, 1.. ,

k

j

k k k k k k

j j j x j

k k k k

j j j x j

k

k k

N j N j

k k

i M i M

k k

i i

c

p p h f f c

p p h c

j M

k k
f

k k

c c j M

c c i N

c c i N

 

 











   


  



 
 



 

 

 

 

для давления: 
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0, ,

,0 ,1 , , 1

1, 0, 0.. ,

, , 1.. 1.

k k

j N j

k k k k

i i i M i M

p p j M

p p p p i N


  

   
 (29) 

Начальные условия (k=0) 

 

 

 

0

0 ,

0

0 ,

0

0 ,

, , 0 0,

, , 0 0,

, , 0 1

i j i j

i j i j

i j i j x

c x y t c

q x y t q

p x y t p i h

  

  

    

 (30) 

Для расчётов использовалась квадратная сетка 

размером 1001×101 узел, шаг сетки по простран-

ству и времени: hx = hy = 0.001, τ = 1∙10–6. 

Время закачивания порции смеси в область t* 

определяется по условию, что в область закачива-

ется 10% от порового пространства внутри рабо-

чей области. 

4. Результаты 

Для оценки значений безразмерных параметров 

модели были взяты физические параметры из экс-

периментов по изучению транспорта растворённо-

го вещества, в ходе которых через пористую ко-

лонну прокачивали порцию раствора хлорида 

натрия [4]. Длина пористой колонны L = 0.6 м, в 

качестве несущей жидкости использовалась вода, 

плотность ρ0 = 103 кг/м3, динамическая вязкость 

η = 10–3 Па∙с. Коэффициент концентрационного 

объёмного расширения водного раствора хлорида 

натрия βС = 1.55, массовая концентрация порции 

раствора равна 10 % (объёмная концентрация 

C0 ≈ 5 %). Пористость ϕ0 = 0.48 и проницаемость 

пористой среды κ(ϕ0) = 2.5∙10‒6 см2 (кварцевый пе-

сок), по этим двум параметра из формулы (7) мо-

жет быть выражена и рассчитана константа Козе-

ни–Кармана, значение которой составило 

γ = 6.1∙10‒6 см2. Некоторые параметры не могут 

быть измерены в эксперименте напрямую, однако 

их можно получить в ходе решения обратной зада-

чи. Для модели (10) параметры были оценены в 

работе [5]. Таким образом, коэффициент распре-

деления примеси Kd ≈ 0.1, коэффициент переноса 

примеси α ≈ 0.01 с–1, коэффициент молекулярной 

диффузии D ≈ 4∙10–3 см2/с. Полученные значения 

безразмерных констант занесены в таблицу.  

Числовые значения безразмерных параметров 

Наименование обозначение значение 

Диффузионное число 

Пекле 

Pe 1580 

Число Рэлея-Дарси  Rp 1370 

Коэффициент ад-

сорбции 

a 438 

Коэффициент де-

сорбции 

b 960 

Коэффициент заку-

порки 

ζ 0.24 

Полученные результаты моделирования приве-

дены на рис. 2–8. На рисунке 2 показана зависи-

мость времени закачивания порции раствора (фик-

сированного объёма) в рабочую область от числа 

Релея–Дарси. Видно, что при Rp < 800 время ме-

няется незначительно. Это связано с тем, что, как 

можно видеть на рис. 6, конвективное течение воз-

никает ещё при подаче примеси в рабочую область 

и при малых значениях числа Rp оно слабо влияет 

на процесс закачки, определяющийся главным об-

разом скоростью фильтрации, обусловленной пе-

репадом давления. При Rp > 800 интенсивность 

вихря растёт, и он начинает оказывать существен-

ное влияние на скорость фильтрации, так как ско-

рость на входе уменьшается, а время закачки уве-

личивается. 

Рост числа Рэлея–Дарси приводит также к уве-

личению времени выхода примеси из области 

рис. 3 движение раствора вверх по колонне обра-

зует неустойчивую стратификацию, когда более 

тяжёлая жидкость оказывается над лёгкой, и это 

приводит к развитию неустойчивости Рэлея–

Тейлора. В результате развивается концентраци-

онная конвекция, по мере выхода примеси из обла-

сти конвективное течение ослабевает, что тоже 

можно видеть на рис. 6. При этом снижение скоро-

сти фильтрации на входе значительнее, чем на вы-

ходе. 

В рамках экспериментальных работ наиболее 

доступным методом измерения концентрации яв-

ляется кондуктометрия. При кондуктометрии из-

меряется величина силы тока между электродами, 

значение этой величины связано с проводимостью 

раствора. Проводимость раствора тем выше, чем 

выше концентрация ионов. В рамках классическо-

го MIM подхода подразумевается полная иммоби-

лизация частиц примеси на стенках пор, в резуль-

тате чего экспериментально определялась бы 

только мобильная фаза концентрации. Однако 

MIM подход не описывает конкретный механизм 

иммобилизации; внутри пористой среды скорость 

потока вблизи стенок меньше, чем в центральной 

части пор. Слой вблизи стенок обычно сильнее 

насыщен примесью (ионами). Таким образом, под 

иммобильной фазой можно понимать слой мед-

ленно движущихся вдоль стенки ионов. Они не те-

ряют подвижность, а концентрация их обычно 

выше, чем в потоке и, как следствие, они влияют 

на проводимость. Параметры сорбции в уравнении 

обмена в этом случае имитируют не физическую 

сорбцию, а переход ионов между пристеночными 

слоями с медленной скоростью и основного быст-

рого потока в поре. Это означает, что в экспери-

менте невозможно точно измерить соотношение 

между фазами подвижности примеси. При исполь-

зовании методов кондуктометрии для полевых ис-

пытаний учитывают, что показания прибора зави-

сят не только от концентрации солей, но и от 

влажности, гранулометрического состава, плотно- 
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сти и температуры почвы. Электропроводность 

почвы обусловлена тремя путями прохождения то-

ка: через почвенный раствор, через обменные ка-

тионы на глинистых частицах и через непосред-

ственный контакт твёрдых частиц. Подробнее 

методы кондуктометрии и её особенности описаны 

в обзорной статье [15]. В связи с этим для сравне-

ния в работе приводится средняя полная концен-

трация, учитывающая как мобильную, так и иммо-

бильную фазы (рис. 4). 

На рисунке 4 представлены мгновенные про-

фили средней полной концентрации (учитываю-

щие вклад обеих фаз) вдоль колонны. Видно, что 

пик концентрационного импульса движется по 

направлению потока и размывается, в момент вре-

мени t = 17∙10–4 на профиле образуется два выпук-

лых участка. Эти участки обусловлены максиму-

мами концентрационных импульсов в мобильной и 

иммобильной фазах, когда в дальнейшем мобиль-

ная примесь покидает область, остаётся только 

концентрационный импульс иммобильной фазы. 

Эволюция профиля концентрации мобильной фазы 

представлена на рис. 7, иммобильной – на рис 8. За 

счёт снижения скорости примесь в обеих 

  
Рис. 2. Зависимость времени закачивания раство-

ра фиксированного объема раствора в рабочую об-

ласть от числа Рэлея–Дарси. Построено для пара-

метров: Pe = 1580 , Rp = 1370, a = 438, b = 960, 

ζ = 0.24, t* = 8.48∙10-4 

Рис. 3. Зависимость времени выхода раствора из 

рабочей области от числа Рэлея–Дарси. Построе-

но для параметров: Pe = 1580, Rp = 1370, a = 438, 

b = 960, ζ = 0.24, t* = 8.48∙10-4 

 

 
Рис. 4. Распределение средней полной концентра-

ции вдоль оси x в различные моменты времени. По-

строено для параметров: Pe = 1580, Rp = 1370, 

a = 438, b = 960, ζ = 0.24, t* = 8.48∙10–4  

Рис. 5. Зависимость средней концентрации мо-

бильной фазы на выходе из области от времени для 

различных значений числа Рэлея–Дарси. Построено 

для параметров: Pe = 1580, Rp = 1370, a = 438, 

b = 960, ζ = 0.24, t* = 8.48∙10–4 
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(а) 

 
(б) 

 
(в) 

 
(г) 

Рис. 6. Функция тока для различных моментов времени а) t=3∙10-4, б) t=7∙10-4, в) t=11∙10-4, г) t=15∙10-4. 

Построено для параметров: Pe = 1580, Rp = 1370, a = 438, b = 960 , ζ = 0.24,  t* = 8.48∙10-4 

 
(а) 

 
(б) 

 
(в) 

 
(г) 

Рис. 7. Поле мобильной фазы концентрации c(x,y,t) для различных моментов времени а) t=3∙10-4, 

б) t = 7∙10-4, в) t=11∙10-4, г) t=15∙10-4. Построено для параметров: Pe = 1580, Rp = 1370 , a = 438, 

b = 960, ζ = 0.24, t* = 8.48∙10-4 
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фазах концентрируется вблизи входа в область, 

после прекращения процесса подачи раствора 

фильтрационный поток начинает сносить их к вы-

ходу. Мобильная фаза, ожидаемо, опережает им-

мобильную, которая перемещается за счёт «фазо-

вого перехода». Растворённое вещество может 

снова начать движение из-за процесса десорбции. 

 На рисунке 5 приведены кривые прорыва – за-

висимости мобильной фазы концентрации на вы-

ходе из области от времени (так как покинуть об-

ласть вместе с несущей жидкостью может только 

мобильная фаза). Можно видеть, что увеличение 

числа Рэлея–Дарси приводит к уменьшению лево-

го пика концентрации. Этот пик связан с мобиль-

ной фазой, его уменьшение обусловлено увеличе-

нием интенсивности концентрационной 

конвекции. Концентрационный импульс размыва-

ется вихревым течением. Вид профиля незначи-

тельно меняется за исключением левого пика, свя-

занного с течением несущей жидкости, второй пик 

соответствует выходу иммобильной фазы поэтому 

можно предполагать, что профиль будет сильно 

зависеть от параметров сорбции, что скажется и на 

времени выхода. 

5. Заключение 

Решена задача о вертикальной фильтрации ко-

нечного объёма смеси через массив пористой сре-

ды при прокачке смеси снизу-вверх. Было показа-

но, что для рассматриваемых параметров в 

системе развивается концентрационная конвекция, 

причиной возникновения которой является не-

устойчивость Рэлея–Тейлора. Получена эволюция 

полей концентрации мобильной и иммобильной 

фазы концентрации, а также поле возмущений 

функции тока, демонстрирующие развитие конвек-

тивного течения. Дана интерпретация образования 

двух максимумов (наблюдаемых также экспери-

ментально) у среднего профиля полной концен-

трации в рамках MIM подхода. Исследовано влия-

ние конвективного течения на процесс введения 

порции в рабочую область и время выхода из об-

ласти, в обоих случаях с ростом числа Рэлея–

Дарси время растёт. 

Работа выполнена в рамках государственного 

задания, регистрационные номера тем 

124021600038-9, 121031700169-1. 

 
(а) 

 
(б) 

 
(в) 

 
(г) 

Рис. 8. Поле иммобильной фазы концентрации q(x,y,t) для различных моментов времени а) t=3∙10-4, б) t=7∙10-4, 

в) t=11∙10-4, г) t=15∙10-4. Построено для параметров: Pe = 1580, Rp =1370, a =438, b =960, ζ=0.24, t*=8.48∙10-4 
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