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Проведена апробация двух конфигураций накладной индукционной системы измерения ско-

рости трансформаторного типа, одна из которых позволяет получать информацию о линей-

ной компоненте скорости жидкого металла, а другая – об азимутальной. Система успешно 

испытана на различных рабочих средах с разной проводимостью – твёрдом дюралюминии, 

жидком галлиевом сплаве и жидком натрии. Изучены чувствительность и погрешность изме-

рительной системы, а также влияние перепадов температуры окружающей среды и эффекта 

сноса магнитного поля на её передаточную функцию. Достигнутой чувствительности доста-

точно для регистрации сигнала большинством современных цифровых вольтметров. Калиб-

ровка накладной измерительной системы произведена на натриевом испытательном стенде 

НИЦ МСС в диапазоне 0–4.42 м/с (0–120 м3/ч). Снос магнитного поля не повлиял на линей-

ность полученной калибровочной характеристики системы. Итоговая относительная погреш-

ность составила 6.5 % во всём диапазоне измерений. Система в линейном исполнении пред-

ставляет собой практически готовый расходомер для жидких металлов. Для применения её в 

промышленных условиях достаточно доукомплектования защитным термокожухом с прину-

дительным охлаждением. Накладная индукционная система измерения скорости признана 

эффективной и в закруглённом исполнении уже активно применяется, например, в корреля-

ционном расходомере «ПИР». 
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Two configurations of a transformer-based clamp-on induction system for velocity measurement 

were tested. One configuration provides information on the linear component of the liquid metal 

velocity, while the other – on the azimuthal component. The system was successfully tested on work-

ing media with different conductivities: solid duralumin, liquid gallium alloy, and liquid sodium. We 

studied the sensitivity and error of the measurement system as well as the effect of ambient temper-

ature fluctuations and magnetic field drift on its transfer function. The achieved sensitivity is suffi-

cient for signal recording by most modern digital voltmeters. Calibration of the clamp-on measure-

ment system was carried out on the sodium test bench of the Scientific and Testing Center of Con-

tinuous Media Mechanics in the range of 0 – 4.42 m/s (0 – 120 m3/h). Magnetic field drift did not 
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affect the linearity of the obtained calibration characteristic of the system. The final relative error 

was 6.5 % over the entire measurement range. The inline system is a virtually ready-to-use flowmeter 

for liquid metals. For industrial use, it only requires the addition of a protective thermal box with 

forced cooling. The clamp-on induction system for velocity measurement has proven effective and, 

in a rounded version, is already actively used, for example, in the ‘PIR’ correlation flowmeter. 
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1. Введение 

Измерение скорости потоков жидких металлов 

является нетривиальной задачей из-за их непро-

зрачности и, зачастую, высокой температуры и хи-

мической активности. Однако эти недостатки ком-

пенсируются высокой электропроводностью жид-

ких металлов, что позволяет применять индукцион-

ные и кондукционные методы измерения. 

Существует большое количество типов датчи-

ков измерения скорости жидких металлов [1]. Каж-

дый из них имеет свои преимущества и недостатки. 

Основные области применения таких датчиков – 

металлургическая и атомная промышленности, а 

также научные лаборатории. Широкое распростра-

нение получили кондуктометрические датчики ско-

рости [2, 3]. Их преимуществом является простота 

реализации и широкие возможности измерения ха-

рактеристик пульсаций скорости. Недостатками яв-

ляются инвазивность, необходимость хорошего 

электрического контакта с жидким металлом и уяз-

вимость постоянных магнитов к высоким темпера-

турам. Существуют методы, основанные на измере-

нии взаимных корреляций между сигналами термо-

пар, установленных вдоль потока [4, 5]. Преимуще-

ством корреляционного метода является прямое из-

мерение скорости без необходимости периодиче-

ской калибровки. Недостатками являются необхо-

димость погружения термопар в поток жидкости, а 

также ограничения со стороны гипотезы Тейлора о 

вмороженности поля температуры в поле скорости 

[6, 7]. Можно также отметить современные бескон-

тактные методы, основанные на измерении силы 

Лоренца [8, 9] или вращении постоянного магнита 

[10]. Применение нашли и алгоритмы машинного 

обучения для вычисления расхода в неинвазивном 

термоконвективном расходомере, но только для уз-

кого диапазона расходов [11]. 

Существуют различные типы бесконтактных 

систем измерения скорости электропроводных 

сред, основанных на индукционном принципе ра-

боты [12, 13]. По типу преобразователей они могут 

быть разделены на две группы: в первой использу-

ются преобразователи трансформаторного/диффе-

ренциально-трансформаторного типа, во второй ис-

пользуются линейные индукторы. Измерительные 

системы с линейными индукторами используют бе-

гущее и/или пульсирующее магнитные поля и, хотя 

и обладают высокой чувствительностью (до 

3 В∙с/м), являются достаточно громоздкими по кон-

струкции и сложными с электротехнической точки 

зрения [13]. Индукционные системы с преобразова-

телями первого типа используют либо осесиммет-

ричные, либо радиальные поля возбуждения. Пер-

вые конструкционно являются «охватывающими» 

трубопровод [14–16], а вторые являются наклад-

ными [10, 17]. Простота конструкции датчиков и 

небольшое число катушек – основные достоинства 

измерительных систем с осесимметричным полем 

возбуждения. Существенными недостатками охва-

тывающих датчиков является сложность их уста-

новки на жидкометаллическом контуре, требую-

щей «врезания» участка контура с монтированным 

датчиком, а также невысокая чувствительность. 

Также датчики такого типа трудно защитить от теп-

лового воздействия контролируемой среды. 

Преимуществом накладных индукционных си-

стем перед охватывающими, является то, что их 

можно монтировать на уже введённые в эксплуата-

цию трубопроводы без необходимости демонтажа. 

Также несложно осуществить теплозащиту датчи-

ков накладного типа, что необходимо при работе с 

большинством металлов в жидком состоянии. 

Важно и то, что такими датчиками можно осу-

ществлять измерения при доступе к объекту с од-

ной стороны – например, при перемешивании ме-

талла в резервуарах, определения скорости движе-

ния в лотках. Поскольку индуцированное при дви-

жении жидкого металла магнитное поле пропорци-

онально магнитному числу Рейнольдса, то о скоро-

сти контролируемой среды можно судить по изме-

нению одной из величин: суммарного магнитного 

поля, вторичного магнитного поля или тока воз-

буждения. Так как электрический сигнал полно-

стью определяется амплитудой, частотой и фазой, 

то каждый из этих параметров может служить ис-

точником информации о скорости движения кон-

тролируемой среды. Основным параметром явля-

ется амплитуда выходного сигнала, но во многих 

случаях с целью уменьшения влияния электромаг-

нитных помех учитывается и фаза выходного сиг-

нала [18]. 

При совмещении натурных измерений с числен-

ным моделированием возможно измерение индук-

ционной системой не только скорости движения 

металла, но и его электропроводности [9]. 
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Цель данного исследования состоит в апроба-

ции индукционной накладной системы измерения 

скорости (НИСИС) трансформаторного типа с ра-

диальным полем для применения в различных 

условиях и с разными рабочими средами. В частно-

сти, рассмотрена возможность использования та-

кой системы на установках лаборатории технологи-

ческой гидродинамики ИМСС УрО РАН и испыта-

тельной лаборатории МСС. 

2. Экспериментальная установка  

и методы 

Схемы НИСИС трансформаторного типа с ради-

альным полем в двух исполнениях (линейном и за-

круглённом) приведены на рис. 1. На зубцах Ш-об-

разного ферромагнитного сердечника 1 размещены 

две генерирующие катушки 2 и 3 и одна измери-

тельная 4. Генерирующие катушки создают пере-

менное магнитное поле возбуждения и соединены 

таким образом, что магнитные потоки, возбуждён-

ные в центральном зубце, направлены встречно. В 

магнитном поле системы расположен канал с жид-

ким металлом 5. Если катушки 2 и 3 создают оди-

наковые и встречно направленные потоки, то оста-

точное напряжение в катушке 4 при отсутствии 

движения металла в канале будет минимальным, 

так как магнитные потоки вторичного вихревого 

поля также направлены встречно. Часть вторичного 

магнитного поля, возникающего при движении 

электропроводной среды, замыкается через сред-

ний зубец, а в измерительной катушке наводится 

ЭДС, пропорциональная скорости движения среды. 

Система в линейном исполнении является класси-

ческой и позволяет измерять линейную скорость 

проводящей среды. В частном случае, при размеще-

нии системы вдоль трубы с проводящей средой (как 

показано на рис. 1 сверху), НИСИС позволяет изме-

рять транзитную скорость потока в этой трубе. Си-

стема в закруглённом исполнении нужна для изме-

рения азимутальной компоненты скорости движе-

ния электропроводной среды в более специфиче-

ских задачах. Например, задача измерения скоро-

сти вращения жидкого металла в электромагнит-

ном перемешивателе или задача о регистрации ази-

мутального возмущения скорости в корреляцион-

ных расходомерах [19]. В таких расходомерах в ка-

честве метки, перемещающейся вместе с потоком, 

используется сильная локальная неоднородность 

азимутальной компоненты скорости самого жид-

кого металла. Создаётся такая неоднородность при 

помощи импульсного воздействия вращающимся 

магнитным полем. 

Предварительная апробация НИСИС в закруг-

лённой конфигурации проводилась в цилиндриче-

ской постановке с использованием электромагнит-

ного перемешивателя «Топаз» (рис. 2), подробно 

описанного в [20]. Данный перемешиватель со-

стоит из шести уровней (колец) по шесть катушек 

на каждом. Из них использовались только два со-

седних уровня: нижний включался в режиме враща-

ющегося магнитного поля, а половина верхнего – в 

режиме измерительной системы (как показано си-

ним на рис. 2 справа) по вышеописанной схеме. 

 

 

Рис. 1. Схемы НИСИС в линейном исполнении 

(сверху) и в закруглённом исполнении (снизу). Пунк-

тирными стрелками показаны направления маг-

нитных потоков 

   

Рис. 2. Фотографии установки для предваритель-

ной апробации системы: на твёрдом металле 

(слева), на жидком металле (справа) 

В качестве подвижной среды, скорость которой 

нужно измерить, брались последовательно диск из 

дюралюминия и жидкий галлиевый сплав 

Ga86.3Zn10.8Sn2.9 (вес. %). Размеры диска и объём 

жидкого металла выбирались таким образом, чтобы 

попадать в область действия обоих задействован-

ных индукторов перемешивателя. Однако стоит от-

метить, что диаметр диска составлял 150 мм, а 

внутренний диаметр цилиндра из нержавеющей 

стали, заполненного жидким сплавом – 98 мм. 

Нижний индуктор подключался к трёхфазному 

источнику Hyundai N700E-110HF/150HFP и приво-

дил во вращение рабочую среду с заданной интен-

сивностью и направлением. Катушки возбуждения 
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измерительной системы питались от однофазного 

источника Pacific Smart Source с частотами от 25 до 

150 Гц (в экспериментах с диском) и от ЛАТР с ча-

стотой 50 Гц (в экспериментах с жидким металлом). 

Напряжение на регистрирующей катушке измеря-

лось с высокой частотой (25 кГц) с помощью платы 

NI-9239 National Instruments. Обработка данных 

позволяла вычислить величину изменения ампли-

туды напряжения, вызванного азимутальным дви-

жением рабочей среды, путём вычисления средне-

квадратичного значения (СКО) сигнала на последо-

вательных отрезках в одну секунду.  

Для измерения скорости движения жидкого ме-

талла в трубопроводе была создана измерительная 

система в линейном исполнении (рис. 3) и система 

крепления. 

    

Рис. 3. Фотографии общего вида НИСИС в линей-

ном исполнении (слева) и его сборка на испыта-

тельный стенд (справа) 

Финальная апробация и калибровка накладной 

измерительной системы проводились на натриевом 

стенде НИЦ МСС [21] в температурном диапазоне 

140–210 °С. Натриевый испытательный стенд пред-

назначен для испытаний электромагнитных насо-

сов, расходомеров и запорного оборудования рабо-

тающих на жидком натрии в качестве рабочей 

среды. Работу стенда обеспечивают следующие си-

стемы: система хранения натрия, система вакууми-

рования, аргоновая система, система измерения 

уровня в натриевых емкостях, система пожароту-

шения и система измерения (основная – ПЛК 

«Овен», RS-485; дополнительная – National Instru-

ments). 

Калибровка измерительной системы производи-

лась по эталонному фабричному расходомеру ЭЛ-

МЕТРО S080. Данный эталонный расходомер отно-

сится к классу кориолисовых и имеет класс точно-

сти 0.5, номинальный и максимальный расходы 150 

и 210 т/ч соответственно. При апробации НИСИС 

также учитывался эффект сноса магнитного поля, 

который начинает проявляться, когда магнитное 

число Рейнольдса приближается к единице. Опре-

делим магнитное число Рейнольдса как: 

𝑅𝑒𝑚 = 𝜇𝜇0𝜎𝑅𝑉, 

где μ, μ0 – относительная и абсолютная магнитные 

проницаемости, σ – электропроводность, R – харак-

терный размер, V – скорость. При 𝑅𝑒𝑚 ≥ 1 магнит-

ные линии поля катушек и линии вторичного маг-

нитного поля будут искажаться, что может ска-

заться на работе НИСИС (линейности калибровоч-

ной зависимости). 

3. Результаты 

Рассмотрим последовательно все этапы апроба-

ции НИСИС: предварительные на установке «То-

паз» и финальный на натриевом контуре. 

3.1. Вращение твёрдого диска 

Типовой эксперимент проходил следующим об-

разом. На катушки возбуждения подавалось пере-

менное напряжение от источника Pacific Smart 

Source с заданной частотой от 25 до 150 Гц и напря-

жением от 50 до 220 В. Затем на фиксированное 

время от 15 до 55 секунд включался трёхфазный ис-

точник Hyundai, питающий нижнее кольцо напря-

жением 180 В с частотой 50 Гц. Возникающее при 

этом вращающееся магнитное поле раскручивало 

диск. После отключения питания Hyundai включа-

лась запись в файл напряжения регистрирующей 

катушки. Пример эволюции амплитуды (СКО) 

напряжения на измерительной катушке (далее – 

сигнал НИСИС) в течение эксперимента для раз-

ных значений напряжения возбуждения приведён 

на рис. 4. 

 
Рис. 4. Эволюция СКО сигнала для разных значений 

напряжения возбуждения. Твёрдый металл. Ча-

стота – 50 Гц 

 

Рис. 5. Зависимость чувствительности НИСИС 

от напряжения возбуждения. Твёрдый металл. Ча-

стота – 50 Гц 
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Видно, что с увеличением питающего напряже-

ния отклик системы улучшается. График зависимо-

сти чувствительности измерительной системы от 

напряжения возбуждения приведён на рис. 5. 

Цилиндр из дюралюминия был снабжён оптиче-

ской системой для измерения частоты его враще-

ния. На рисунке 6 приведены примеры эволюций 

частоты вращения, линейной скорости боковой по-

верхности диска и сигнала системы измерения 

(напряжение возбуждения 220 В, частота 50 Гц, 

время разгона 35 секунд). 

Кривые, полученные с помощью оптической си-

стемы, не доходят до оси абсцисс по причине того, 

что на диске имелась только одна отражающая 

метка и остановка диска не фиксировалась. Си-

стема также зеркально чувствительна к направле-

нию вращения металлического диска. 

 

Рис. 6. Эволюция СКО напряжения, частоты вра-

щения диска и линейной скорости на радиусе 75 мм 

Изучался отклик НИСИС при различных часто-

тах напряжения возбуждения системы регистра-

ции. Для этого сначала фиксировалось напряжение 

и менялась частота (при этом менялся и ток в ка-

тушках возбуждения), а затем фиксировался ток и 

менялась частота (при этом менялось и напряжение 

в катушках возбуждения). Был сделан вывод о том, 

что система чувствительна именно к изменению 

напряжения. При фиксированном напряжении на 

катушках возбуждения чувствительность системы 

практически не изменяется с изменением частоты. 

Это позволит при необходимости повысить дискре-

тизацию сигнала НИСИС с помощью повышения 

частоты на катушках возбуждения (можно будет 

вычислять СКО на отрезках меньше 1 секунды). 

3.2. Вращение галлиевого сплава 

Замеры производились по такой же схеме, как и 

в случае с металлическим диском. На рис. 7 приве-

дён пример отклика системы для различных значе-

ний напряжения возбуждения. 

Интересно отметить, что замедление жидкого 

галлиевого сплава происходит иначе, чем торможе-

ние твёрдого диска. В первом случае скорость па-

дает по закону, близкому к квадратичному, а во вто-

ром – к линейному. При этом НИСИС фиксирует 

колебания жидкой среды, которые становятся 

лучше различимыми с повышением напряжения 

возбуждения. Чувствительность системы в случае 

жидкого металла оказалась примерно в семь раз 

ниже, чем для диска (рис. 8). Тому есть две при-

чины. Во-первых, проводимость галлиевого сплава 

в 9 раз меньше, чем у дюралюминия. А во-вторых, 

диаметры вращающихся сред отличаются в пол-

тора раза, а значит, измерительная система больше 

удалена от рабочей среды в случае жидкой среды. 

 

Рис. 7. Эволюция СКО сигнала для разных значений 

напряжения возбуждения. Жидкий металл. Ча-

стота – 50 Гц 

 
Рис. 8. Зависимость чувствительности НИСИС 

от напряжения возбуждения. Жидкий металл. Ча-

стота – 50 Гц 

3.3. Транзитное течение натрия 

Финальная апробация и калибровка НИСИС 

проводились на натриевом стенде НИЦ МСС в тем-

пературном диапазоне по натрию 140 – 210 °С. 

Напряжение на катушках возбуждения НИСИС за-

давалось равным 150 В для предотвращения их 

нагрева за счёт Джоулева тепла. 

На рисунке 9 приведён пример сигнала измери-

тельной системы и показания расхода в м3/ч опор-

ного расходомера. Видно, что НИСИС чувствите-

лен к изменению расхода, однако с увеличением 

расхода растут колебания его сигнала. Диапазон 

расхода натрия составил от 0 до 120 м3/ч. При этом 

средняя по сечению скорость внутри трубы соста-

вила от 0 до 4.42 м/с, а магнитное число Рейноль-

дса, посчитанное через радиус трубы (49 мм), до-

стигало значения 2.1. Таким образом, уже начиная 

с расхода 60 м3/ч мог происходить снос магнитного 

поля. 
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Рис. 9. Пример сигнала НИСИС в сравнении с пока-

заниями опорного расходомера 

 

Рис. 10. Калибровочная прямая НИСИС 

 

Рис. 11. График температуры НИСИС во время 

калибровочных испытаний 

На рисунке 10 приведена полученная калибро-

вочная характеристика измерительной системы по 

опорному расходомеру. Вертикальными отрезками 

показаны СКО сигнала для данного расхода. Если 

теперь провести линейную аппроксимацию полу-

ченных точек, можно получить результирующую 

калибровочную прямую (чёрная прямая на ри-

сунке). Видно, что точки хорошо ложатся на пря-

мую, существенной нелинейности не наблюдается 

даже в области 𝑅𝑒𝑚 ≥ 1. 

Итоговая чувствительность прибора составила 

3.3 мВ·ч/м3 или 90 мВ∙с/м. Калибровочный коэффи-

циент, таким образом, получился равным 

302.5 м3/(В·ч). Максимальная относительная по-

грешность измерений составила 6.5 %. В составе 

НИСИС линейного исполнения был также преду-

смотрен датчик температуры. Он представлял со-

бой хромель-алюмелевую термопару, установлен-

ную вплотную к измерительной катушке. С помо-

щью этого датчика производился контроль пере-

грева расходомера. На рисунке 11 приведён график 

температуры НИСИС во время калибровочных ис-

пытаний. 

Видно, что во время калибровочной сессии тем-

пература НИСИС менялась примерно на 50 °С, что 

не приводило к нарушению её работы (изменению 

чувствительности и разброса показаний), что выра-

жается в том, что его показания хорошо ложатся на 

калибровочную прямую (рис. 10). Соответственно, 

можно сделать вывод, что за счёт балансной изме-

рительной схемы показания НИСИС не чувстви-

тельны к изменению температуры окружающей 

среды.  

4. Заключение 

В рамках данной работы проведена апробация 

накладной индукционной системы измерения ско-

рости трансформаторного типа двух конфигураций 

– линейной и закруглённой. Система успешно ис-

пытана на различных рабочих средах с разной про-

водимостью – твёрдом дюралюминии (26 МСм/м), 

жидком галлиевом сплаве (2.9 МСм/м) и жидком 

натрии (7.8 МСм/м). Чувствительность системы в 

закруглённой конфигурации составила 50 мВ∙с/м 

для твёрдого дюралюминия и 7 мВ∙с/м для жидкого 

галлия. Для жидкого натрия была достигнута чув-

ствительность 90 мВ∙с/м при использовании си-

стемы в линейной конфигурации. Такой чувстви-

тельности достаточно для регистрации большин-

ством современных цифровых вольтметров. При-

мечательно, что чувствительность НИСИС в линей-

ном исполнении применительно к жидким метал-

лам на порядок выше, чем в закруглённом, не-

смотря на то что проводимость отличается только в 

2.7 раз. Авторы связывают это с тем, что объём ме-

талла, попадающего в область действия системы, 

существенно больше в случае транзитного течения 

металла по трубе, чем в случае его азимутального 

вращения. 

Система в линейном исполнении представляет 

собой практически готовый расходомер для жид-

ких металлов. Для применения его в промышлен-

ных условиях достаточно будет добавить защитный 

термокожух с принудительным охлаждением. Диа-

пазон работы такого расходомера с относительной 

погрешностью 6.5 % составил 20–120 м3/ч. Снос 

магнитного поля не повлиял на линейность калиб-

ровочной характеристики системы.  

Таким образом, накладная индукционная си-

стема измерения скорости признана эффективной и 

уже активно применяется, например, в корреляци-

онном расходомере «ПИР» (Пермский индукцион-

ный расходомер) [19]. 
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Исследование выполнено в рамках государ-

ственного задания, регистрационный номер темы 

124012300246-9. 
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