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Численно исследовано течение вязкой жидкости в поле тяжести в наклоненном двухслойном 

канале конечной ширины, который наполовину заполнен пористой средой. Моделирование 

проводилось в широком диапазоне чисел Дарси и чисел Рейнольдса. Коэффициент пористо-

сти среды считается однородным и постоянным. Задача решалась методом решеточных урав-

нений Больцмана. Для моделирования течения в пористой среде использовался метод репре-

зентативного элементарного объема. Верификация численной схемы проводилась на двух 

видах граничных условий на верхней границе – твердой и свободной недеформируемой гра-

нице. Показано, что метод хорошо воспроизводит характеристики течения в случае заданного 

значения коэффициента пористости в сравнении с результатами, полученными методом ко-

нечных разностей. Увеличение ширины канала приводит к более интенсивному течению, то 

есть к росту числа Рейнольдса, и, при дальнейшем увеличении, происходит развитие неустой-

чивости Кельвина-Гельмгольца. 

 

Ключевые слова: пористая среда; двухслойный канал; граница раздела; метод решеточных уравнений 

Больцмана; метод репрезентативного элементарного объема; неустойчивость Кельвина-Гельмгольца 

 

Поступила в редакцию 19.02.2025; после рецензии 18.03.2025; принята к опубликованию 24.03.2025 

Numerical simulation of the flow in a two-layer 

porous channel by the lattice Boltzmann 

method 
I. V. Volodin1† , A. A. Alabuzhev1,2 
1 Institute of Continuous Media Mechanics UB RAS, Perm, Russia  
2 Perm State University, Perm, Russia 
†ivanwolodin@gmail.com 

 

We have numerically investigated the flow of a viscous fluid in a gravitational field within an in-

clined two-layer channel of finite width, half-filled with a porous medium. The simulation was car-

ried out over a wide range of Darcy and Reynolds numbers. The porosity coefficient of the medium 

was assumed to be homogeneous and constant. The problem was solved using the lattice Boltzmann 

method. The representative elementary volume (REV) method was used to simulate the flow in the 

porous medium. To verify the numerical scheme, two types of boundary conditions were applied at 

the upper boundary: a solid boundary and a free non-deformable boundary. As the study shows, the 

method accurately reproduces the flow characteristics for a given porosity coefficient, demonstrat-

ing strong agreement with results obtained using the finite difference method. An increase in the 
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channel width leads to a more intense flow, reflected in the growth of the Reynolds number, and 

with further expansion the Kelvin–Helmholtz instability develops. 
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1. Введение 

Изучение поведения жидкости в каналах с ча-

стично заполненными пористыми средами пред-

ставляет значительный фундаментальный и при-

кладной интерес. Такие системы часто встречаются 

в природе и технике, например, в фильтрационных 

установках, геотермальных системах, нефтяных 

коллекторах и биологических тканях. Понимание 

механики таких течений может иметь важное зна-

чение для оптимизации рабочих процессов и повы-

шения эффективности технологий [1–3]. 

Стационарное течение жидкости через насы-

щенный пористый слой широко изучалось ранее, 

например, в [4–7]. Для аналитического описания та-

ких задач используется, как правило, модель 

Бринкмана [8] или модель Дарси–Форхгеймера [9]. 

Помимо существования стационарных решений 

возможно возникновение неустойчивости Кель-

вина-Гельмгольца на границе раздела жидкость-по-

ристая среда. При этом, как известно [10, 11], по-

добные системы характеризуются бимодальностью 

нейтральных кривых и существованием двух меха-

низмов возникновения неустойчивости: длинно-

волновый механизм, когда возникающие крупные 

вихри захватывают оба слоя, и коротковолновый, 

когда вблизи границы раздела начинают формиро-

ваться маленькие вихревые структуры. В ряде ра-

бот исследовалась устойчивость таких плоскопа-

раллельных течений [11–15]. Численное 

моделирование в двумерных постановках рассмат-

ривалось в [16, 17].  

Отметим, что в горизонтальной двухслойной 

системе, состоящей из слоя бинарной жидкости и 

расположенного под ним слоя пористой среды, 

насыщенной жидкостью, также возможно развитие 

коротковолновой и длинноволновой неустойчиво-

сти положения механического равновесия. Корот-

коволновые конвективные валы формируются в 

слое жидкости над пористой средой. Длинноволно-

вые валы проникают в пористый слой. 

При численном моделировании, особенно для 

нестационарных течений, как ламинарных, так и 

турбулентных, большое распространение получили 

различные методы конечных разностей. Трудности 

реализации этих методов связаны с согласованно-

стью решения граничным условиям, обеспечением 

численной устойчивости и управлением вычисли-

тельными ресурсами.  

Одним из эффективных численных методов мо-

делирования гидродинамических задач является 

метод решеточных уравнений Больцмана (Lattice 

Boltzmann Method, LBM). За последние несколько 

десятилетий он приобрел широкую популярность 

среди исследователей [18]. 

Интерес к этому методу неуклонно растет с мо-

мента его возникновения на основе модели реше-

точного газа [19, 20]. Оба этих метода моделируют 

течение жидкостей и газов, имитируя их ключевые 

физические процессы – движение частиц и их рас-

сеяние при столкновениях. В изотермическом слу-

чае алгоритм LBM имеет строгое теоретическое 

обоснование, основанное на физической кинетике, 

классической гидродинамике и гауссово-эрмито-

вых аппроксимациях [21–23]. 

LBM является мощным численным инструмен-

том для моделирования течений, поскольку его вы-

числения локальны, что делает метод высокоэф-

фективным для параллельных вычислений. Кроме 

того, он удобен для задач со сложной геометрией 

[21, 23]. 

Метод решеточных уравнений Больцмана полу-

чил широкое распространение и в задачах модели-

рования течений в пористых средах. В изотермиче-

ском случае для описания таких течений может 

быть использовано несколько подходов [21, 24–27]. 

В данной работе методом решеточных уравне-

ний Больцмана проводится моделирование течения 

в наклоненном двухслойном канале, насыщенном 

пористой средой. Одной из целей является апроба-

ция этого метода для подобных задач и демонстра-

ция его возможностей. 

2. Постановка задачи 

Будем рассматривать течение вязкой жидкости 

в канале шириной ℎ, находящимся в поле тяжести 

под углом 𝛼 к горизонту. Канал разделен на две ча-

сти: нижняя часть состоит из пористой среды, верх-

няя часть – свободная. Коэффициенты пористости 

𝜀 и проницаемости 𝐾 однородны и постоянны. Гео-

метрия задачи приведена на рис. 1, серым цветом 

обозначена область, занятая пористым скелетом. 

В данной работе предполагается, что коэффици-

енты 𝜀 и 𝐾 не связаны друг с другом. Рассматрива-

ется двумерная постановка, значение коэффици-

ента пористости постоянно во всех численных 

экспериментах: 𝜀 = 0.5. 
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На нижней границе поставлено граничное усло-

вие прилипания, на боковых стенках – периодиче-

ские граничные условия. На верхней границе рас-

сматриваются два условия – твердая поверхность и 

свободная недеформируемая поверхность. 

 
Рис. 1. Геометрия задачи  

Задача в такой постановке исследовалась в [16], 

в которой выбранное обезразмеривание и алгоритм 

решения ставили жесткое ограничение на ширину 

канала, и практически все результаты приведены 

для одного значения числа Рейнольдса 𝑅𝑒 = 100. 

В данной работе задача решается мезоскопиче-

ским численным методом и рассматривается более 

широкий диапазон 𝑅𝑒.  

3. Численная модель 

3.1. Континуальное кинетическое уравне-

ние Больцмана 

Одним из эффективных численных методов мо-

делирования гидродинамических задач является 

метод решеточных уравнений Больцмана.  

Вычислительный алгоритм в изотермическом 

случае может быть выведен из кинетического урав-

нения Больцмана [28, 29], в котором, как известно, 

вводится статистическое представление ансамбля 

частиц. Само уравнение имеет вид: 

𝜕𝑓

𝜕𝑡
+ 

𝜕𝑓

𝜕𝒓
+

𝑭

𝜌

𝜕𝑓

𝜕
= Ω(𝑓). (1) 

Эволюция системы определяется функцией распре-

деления 𝑓(𝒓, , 𝑡), где 𝑡, 𝒓 и    – время, радиус-век-

тор и скорость ячейки элемента фазового объема, 

соответственно, 𝑭 – сила, действующая на ячейку 

элемента фазового объема, 𝜌 – плотность элемента 

фазового объема, Ω(𝑓) – интеграл столкновений.  

Описание системы строится на мезоскопиче-

ском масштабе, который занимает промежуточное 

положение между характерными масштабами мо-

лекулярной динамики и сплошной среды. Макропа-

раметры среды выражаются через соответствую-

щие моменты функции распределения 

[см., например, 29].  

Критерием подобия, определяющим степень 

разреженности течения потока частиц, является 

число Кнудсена 𝐾𝑛 = 𝑙𝑚𝑝𝑓 𝑙𝑆⁄ , где 𝑙𝑚𝑝𝑓  – средняя 

длина свободного пробега частиц, 𝑙𝑆 – характерный 

размер задачи. При 𝐾𝑛 ≪ 1 можно использовать 

сплошносредное описание (уравнение Навье-

Стокса), однако при 𝐾𝑛 ≤ 1 нельзя считать, что си-

стема находится в состоянии локального термоди-

намического равновесия и уравнение Навье-Стокса 

становится неприменимым. При этом использова-

ние кинетического уравнения Больцмана допу-

стимо во всем диапазоне значений 𝐾𝑛. Таким обра-

зом, в иерархической цепочке математических 

моделей, описывающих динамику большого числа 

материальных частиц, оно стоит выше, чем уравне-

ние Навье-Стокса [30]. 

Для решения разного рода задач в кинетическом 

уравнении Больцмана допустимо использовать ли-

неаризованное приближение интеграла столкнове-

ний [29, 31]: 

Ω(𝑓) = −
𝑣𝑇̅̅ ̅

𝑙𝑚𝑝𝑓

(𝑓 − 𝑓𝑒𝑞) = −
𝑓 − 𝑓𝑒𝑞

τ
, (2) 

в котором вводятся равновесная функция распреде-

ления 𝑓𝑒𝑞(𝒓, , 𝑡) и параметр 𝜏 = 𝑙𝑚𝑝𝑓 𝑣𝑇⁄ , где 𝑣𝑇̅̅ ̅ – 

осредненная скорость теплового движения моле-

кул. В качестве равновесной функции используется 

распределение Максвелла. В оценке (2) учтено, что 

равновесное статистическое состояние (𝑓 = 𝑓𝑒𝑞) 

тождественно удовлетворяет уравнению (1). Как 

видно, такая линеаризованная оценка становится 

неприменимой в случае τ → 0, что соответствует 

системам с большой плотностью частиц 

 (𝑙𝑚𝑝𝑓 → 0).  

Предполагая близость системы к локальному 

термодинамическому равновесию и оценку 𝐾𝑛 ≪
1, из (1) и (2), можно вывести классические уравне-

ния гидродинамики: уравнение неразрывности, 

уравнение Навье-Стокса и уравнение закона сохра-

нения энергии [см., например, 21, 22, 29, 30]. 

3.2 Дискретизация кинетического уравне-

ния Больцмана и переход к изотермиче-

ской модели LBM 

Первый шаг в построении численного алго-

ритма заключается в дискретизации исходного кон-

тинуального уравнения Больцмана. Это нетриви-

альный шаг, так как исходное уравнение написано 

для (2𝐷 + 1)-мерного фазового пространства, где 

𝐷 – размерность пространства и, кроме того, в урав-

нение (1) входит мезоскопическая скорость  эле-

мента фазового объема и производная по этой ско-

рости. 

Тем не менее дискретизированное уравнение 

Больцмана может быть получено из исходного кон-

тинуального несколькими способами [21]. Самый 

формальный и строгий подход заключается в дис-

кретизации функций распределения в пространстве 

скоростей через полиномы Эрмита и квадратуру 

Гаусса–Эрмита, обобщенные на размерность 𝐷 

[21–23]. 

Для определения макроскопических характери-

стик течения, таких как плотность, импульс и энер-

гия, достаточно первых двух моментов уравнения 
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Больцмана. По этой причине для восстановления 

макропараметров можно не рассматривать все 

члены ряда разложения 𝑓   и 𝑓𝑒𝑞  по полиномам Эр-

мита, а достаточно рассмотреть только первые три 

члена разложения. 

Исходя из вышеизложенного и полагая 𝐷 ≥ 2, 
можно представить дискретизированную обезраз-

меренную равновесную функцию распределения в 

индексной форме записи в виде: 

𝑓𝑖
𝑒𝑞

(𝜌, 𝑢𝛼 , 
𝛼

) = 𝜔𝑖𝜌 (1 +
𝑐𝑖𝛼𝑢𝛼

𝑐𝑠
2

+

+
𝑢𝛼𝑢𝛽(𝑐𝑖𝛼𝑐𝑖𝛽 − 𝑐𝑠

2𝛿𝛼𝛽)

2𝑐𝑠
4

) , (3)

 

где 𝜔𝑖, 𝑐𝑖𝛼  – веса и узлы квадратуры Гаусса–Эр-

мита, соответственно, 𝛿𝛼𝛽 – дельта символ Кроне-

кера, 𝑢𝛼 – скорость потока, 𝑐𝑠
  – скорость звука [23]. 

Макроскопические параметры тогда можно 

найти по следующим формулам: 

𝜌(𝒙, 𝑡) = ∑ 𝑓𝑖

Q−1

𝑖=0

(𝒙, 𝑡) = ∑ 𝑓𝑖
𝑒𝑞

Q−1

𝑖=0

(𝒙, 𝑡), (4) 

𝜌(𝒙, 𝑡) 𝒖(𝒙, 𝑡) = ∑ 𝒄𝑖𝑓𝑖(𝒙, 𝑡)

Q−1

𝑖=0

= ∑ 𝒄𝑖𝑓𝑖
𝑒𝑞(𝒙, 𝑡)

Q−1

𝑖=0

, (5) 

где 𝒙 – пространственная координата вычислитель-

ной сетки, 𝑄 – число узлов квадратуры, 𝒖, 𝜌 – зна-

чение скорости и плотности в узле 𝒙, соответ-

ственно. Эволюционное уравнение (1) в 

дискретном виде запишется в виде: 

𝑓𝑖(𝒙 + 𝒄𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖(𝒙, 𝑡) −

−Δ𝑡
𝑓𝑖 − 𝑓𝑖

𝑒𝑞

𝜏
+ 𝑆𝑖Δ𝑡, (6)

 

где Δ𝑡 – дискретный шаг по времени, 𝑆𝑖 – источни-

ковое слагаемое.  

Второй шаг построения численного алгоритма 

заключается в выборе числа узлов квадратуры или, 

в терминах LBM, выборе скоростной модели. От 

него зависят значение весовых коэффициентов 𝜔𝑖, 

выбор сета скоростей 𝑐𝑖𝛼  и значение скорости звука 

𝑐𝑠
  [32–34]. 

В данной работе используется модель D2Q9, что 

соответствует двумерному физическому простран-

ству, значению 𝑐𝑠
 = √3

−1
 и девяти разрешенным 

значениям скоростей 𝑐𝑖𝛼 , численные значение кото-

рых можно найти, например, в [23].  

При помощи разложения Чепмена–Энскога [36] 

дискретная модель (3)–(6), в предположении мало-

сти числа Маха (𝑀𝑎 = 𝑢𝛼/𝑐𝑠), может быть сведена 

к сжимаемому уравнению неразрывности и уравне-

нию Навье-Стокса, а также можно установить связь 

параметра времени релаксации 𝜏 с вязкостью среды 

𝜈 [см, например, 21, 23]: 

𝜈 = 𝑐𝑠
2 (𝜏 −

Δ𝑡

2
) , (7) 

3.3 Модель LBM для пористой среды 

В настоящий момент используются в основном 

два алгоритма LBM для моделирования задач пори-

стой среды – Pore-Structure (PS) метод и метод ре-

презентативного элементарного объема 

(Representative Elementary Volume, REV).  

Первый подход требует детального описания 

матрицы жидкости с учетом заранее заданных пре-

пятствий, играющих роль образования пористого 

скелета. Очевидно, что скорость на этих препят-

ствиях должна быть нулевой и поэтому в этом под-

ходе ключевую роль играет правильное задание 

значений функции распределения на этих препят-

ствиях [21, 23, 24]. 

Использование второго подхода не предпола-

гает детализированного представления структуры 

пористого скелета, и среда рассматривается как 

континуум [14]. При этом становится возможным 

использование эмпирических моделей, например, 

таких как закон Дарси. 

В представленной работе используется REV-

алгоритм, который наряду с (3), (4), (6), (7) допол-

няется следующими слагаемыми: 

𝑆𝑖(𝒙, 𝑡) = 𝜔𝑖𝜌 (1 −
1

𝜏 

) [
𝒄𝒊𝑭

𝑐𝑠
2

+
𝒖𝑭: (𝒄𝒊𝒄𝒊 − 𝑐𝑠

2𝑰)

𝜀𝑐𝑠
4

] , (8) 

𝑭(𝒙, 𝑡) = −
𝜀𝜈

𝐾
𝒖 −

𝜀𝐹𝜀

√𝐾
|𝒖|𝒖 + 𝜀𝑮, (9) 

где 𝑰 – единичный тензор, двоеточие означает 

свертку по двум индексам, 𝑮 – внешняя сила.  

Кроме того, помимо источникового слагаемого 

𝑆𝑖, учета объемных сил и сил, связанных с пористо-

стью, в алгоритм вместо (5) вводится фиктивная 

скорость 𝑾: 

𝑾(𝒙, 𝑡) =
1

𝜌(𝒙, 𝑡)
∑ 𝒄𝒊𝑓𝑖

𝑄−1

𝑖=0

(𝒙, 𝑡) +
Δ𝑡

2
𝜀𝑮, (10) 

через которую пересчитывается истинная скорость 

течения 𝒖(𝑈, 𝑉): 

𝒖(𝒙, 𝑡) =
𝑾

𝐿0 + √𝐿0
2 + 𝐿1|𝑾|

, (11) 

а коэффициенты в знаменателе имеют вид: 

𝐿0 =
1

2
(1 + 𝜀

Δ𝑡

2

𝜈

𝐾
) ,  

𝐿1 = 𝜀
Δ𝑡

2

𝐹𝜀

√𝐾
,   (12) 

𝐹𝜀 =
1.75

√150𝜀3
.  

Случай 𝜀 = 1 и 𝐾 → ∞ соответствует переходу 

от пористой среды к обычной. Тогда REV-метод пе-

реходит в классический LBM для сплошносредных 

систем (𝐿0 = 1/2, 𝐿1 = 0, 𝒖 = 𝑾). 

При помощи разложения Чепмена–Энскога 

можно показать, что представленная модель сво-
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дится к модели Бринкмана [26]. В работе [27] про-

водится сравнительный анализ PS-метода и REV-

метода.  

Для реализации алгоритма использовался само-

писный код на языке С++, для визуализации резуль-

татов – язык Python версии 3.11 и библиотеки mat-

plotlib и numpy. Для сходимости алгоритма к 

стационарному решению применялась оценка: 

√∑ (𝒖𝑖,𝑗
𝑡+Δ𝑡 − 𝒖𝑖,𝑗

𝑡 )
2 

𝑖,𝑗

√∑ (𝒖𝑖,𝑗
𝑡+Δ𝑡)

2 
𝑖,𝑗

≤ ℇ, (13) 

где погрешность ℇ = 10−6,  а индексы 𝑖, 𝑗 обозна-

чают дискретные продольные и поперечные про-

странственные координаты, соответственно.  

4. Верификация численной модели 

Проведем верификацию численной модели. Для 

этого размерные результаты, полученные LBM, бу-

дем сравнивать с размерными результатами ра-

боты [16]. 

4.1. Оценка масштабов обезразмеривания 

переменных 

В работе [16] управляющие параметры (число 

Рейнольдса и число Дарси 𝐷𝑎) и обезразмеривание 

скорости имели вид: 

𝑅𝑒 =
𝑔ℎ3

𝜈2
sin(𝛼) ,  

[𝑢] = 𝐶𝑣 =
𝑔ℎ2

𝜈 
sin(𝛼) , (14) 

𝐷𝑎 =
𝐾

ℎ2
.  

Для используемого в работе [16] 𝑅𝑒 = 100 и для 

значений 𝜈 = 10−5 м2 с⁄ , 𝑔 = 9.8 м с2⁄ , 𝛼 = 30°, 

получаем, что толщина слоя ℎ ≅ 1.268 ∙ 10−3 м. 

При таких значениях скейлинговый множитель для 

скорости 𝐶𝑣 ≅ 0.7883. 
Для LBM-моделирования будем использовать 

пространственную сетку с числом узлов 𝑁𝑥 = 1000 

в продольном направлении и 𝑁𝑧 = 100 в попереч-

ном направлении. Тогда скейлинговый множитель 

для пространства 𝐶𝑙 = 𝑁𝑦 ℎ⁄ = 1.268 ∙ 10−5. 

  

а б 

  

в г 

Рис. 2. Размерные значения вертикальных сечений продольной компоненты скорости в центре 

области для случая твердой границы (а, б) и свободной недеформируемой границы (в, г) (𝑅𝑒 =
100, 𝜈 = 10−5 м2 с⁄ , 𝑔 = 9.8 м с2⁄ , 𝛼 = 30°, ℎ ≅ 1.268 ∙ 10−3 м): (а, в) – LBM-результаты, 

(б, г) – результаты [16]. 
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Безразмерный временной множитель 𝐶𝑡 найдем 

исходя из отношения безразмерной и размерной 

вязкостей [23]. Значение безразмерной вязкости в 

LBM-моделировании связано с 𝜏  (7). С точки зре-

ния численной устойчивости это важнейший пара-

метр, для которого должно строго выполняться со-

отношение 𝜏 > 0.5. Положив 𝜏 = 0.9499(9), 

получим, 𝐶𝑡 = 2.4117 ∙ 10−6 и, соответственно, 

𝐶𝑣
𝐿𝐵𝑀 = 𝐶𝑙 𝐶𝑡⁄ ≅5.257. 

4.2. Сравнение результатов решения для 

твердой границы и свободной недефор-

мируемой границы 

В случае твердых границ используется bounce-

back схема [см., например, 23] для восстановления 

нулевой скорости 𝒖(𝑈, 𝑉)  =  0 на границе, что со-

ответствует условию прилипания. Сравнение ре-

зультатов при 𝑅𝑒 = 100 приведено на рис. 2, а, б. 

Видно хорошее качественное совпадение результа-

тов. С точки зрения количественного сравнения 

можно видеть, что получено совпадение результа-

тов по порядку величины, но наблюдается некото-

рое расхождение для чисел Дарси 𝐷𝑎 =  10−4 и 

𝐷𝑎 =  10−2. По всей видимости, расхождения свя-

заны с тем, что для промежуточных значений 

управляющего параметра (𝐷𝑎 =  10−3) достаточно 

линеаризованной аппроксимации оператора столк-

новений в дискретной модели – уравнения (6) и 

простого типа граничных условий Zou–He [23]. Для 

лучшего совпадения количественных результатов 

можно использовать более сложную модель для 

оператора столкновений, например, TRT-модель 

(Two-relaxation-time) или MRT-модель (multiple-

relaxation-time), а также другую модель граничных 

условий, например, модель non-equilibrium 

extrapolation scheme [23].  

Отметим также, что полученные методом ко-

нечных разностей результаты зависят от использу-

емых граничных условий на границе раздела пори-

стая среда – чистая жидкость. Например, в [37] 

отмечается, что порог неустойчивости и скорость 

зависят от используемой модели пористой среды и 

граничных условий на поверхности раздела.  

В случае свободной недеформируемой верхней 

границы (𝜕𝑈 𝜕𝑧⁄ = 0, 𝑉 = 0) в LBM используется 

граничное условие free-slip [см., например, 23], ко-

торое соответствует граничному условия «не про-

текания», т.е. 𝑉 = 0. Сравнение результатов для 

𝑅𝑒 = 100 приведено на рис. 2, в, г. Также видим ка-

чественное и количественное совпадение результа-

тов.  

 

Рис. 3. Сравнение максимального значения 

скорости в LBM-схеме и конечно-разност-

ной схеме [16], с.г. – свободная граница, т.г. 

– твердая 

Для более детального сравнения, на рис. 3 при-

ведены максимальные размерные значения про-

дольных компонент скорости в случае рассмотрен-

ных граничных условий и при разных числах 

Дарси. В таблице приведены относительные по-

грешности полученных максимальных размерных 

значений продольных компонент скорости. 

 
(а) 

 
(б) 

Рис. 4. Результаты моделирования задачи при разных значениях числа Дарси. Приведены вертикаль-

ные сечения продольных компонент скорости в центре области для случая твердой верхней границы 

при 𝑅𝑒 = 6125 (а) и при 𝑅𝑒 = 10584  (б) 
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Отличие результатов в случае свободной гра-

ницы можно объяснить особенностью постановки 

граничных условий в LBM. Для свободной неде-

формируемой границы используется схема free-

slip, которая удовлетворяет условию 𝑉 = 0, но при 

этом не накладывает такого ограничения на 𝜕𝑈 𝜕𝑧⁄ . 

Отличие результатов в случае твердой верхней гра-

ницы можно объяснить малыми значениями полу-

чающихся характерных скоростей, что суще-

ственно при вычислении относительной 

погрешности.  

Тем не менее следует отметить в целом хорошее 

количественное совпадение результатов. 

Сравнение максимального значения про-

дольных компонент скорости, полученных 

в [16] и в представленной работе при раз-

ных значениях 𝐷𝑎 и разных типах гранич-

ных условий (г.у.) 

Тип г.у. на верх-

ней границе и 

значение 𝐷𝑎 

Результат 

[16],  

𝑈𝐹𝐷, м 

Результат 
LBM, 

𝑈𝐿𝐵𝑀 , м 

Относи-

тельная 

погреш-

ность, 

Свободная гра-

ница (с.г.), 

𝐷𝑎 = 10−4 

102 ∙ 10−3 68.3 ∙ 10−3 33.1 

с.г., 

𝐷𝑎 = 10−3 
110 ∙ 10−3 105 ∙ 10−3 4.55 

с.г., 

𝐷𝑎 = 10−2 
141 ∙ 10−3 147 ∙ 10−3 4.26 

Твердая граница 

(т.г.), 

𝐷𝑎 = 10−4 

256 ∙ 10−4 217 ∙ 10−4 15.2 

т.г., 

𝐷𝑎 = 10−3 
260 ∙ 10−4 270 ∙ 10−4 3.85 

т.г., 

𝐷𝑎 = 10−2 
315 ∙ 10−4 374 ∙ 10−4 18.8 

При этом влияние вертикальной компоненты 

скорости мало, что согласуется с ранее получен-

ными результатами [16]. 

5. Обсуждение результатов  

Рассмотрим теперь поставленную задачу со сво-

бодной недеформируемой верхней границей при 

больших числах Рейнольдса. Для выбранного обез-

размеривания (14) это будет соответствовать, 

например, каналу большей ширины ℎ.  
Для примера проведем вычисления при ширине 

канала ℎ = 0.5 ∙ 10−2 м и ℎ = 0.6 ∙ 10−2 м, что соот-

ветствует 𝑅𝑒 = 6125 и 𝑅𝑒 = 10584. Результаты ре-

шения приведены на рис. 4, 5. 

Увеличение числа Рейнольдса приводит к уве-

личению значений продольной компоненты скоро-

сти. При значениях безразмерных параметров 𝑅𝑒 =
10584 и 𝐷𝑎 =  10−2 происходит развитие неустой-

чивости Кельвина-Гельмгольца. Отметим, что дан-

ное число 𝑅𝑒 = 10584 больше критического числа 

Рейнольдса согласно результатами линейной тео-

рии устойчивости для 𝐷𝑎 =  10−2 [14, 15]. И тече-

ние устойчиво для более низких значений чисел 

Дарси 𝐷𝑎 =  10−3 и 𝐷𝑎 =  10−4 (рис. 4, б). Но при 

дальнейшем увеличении числа Рейнольдса проис-

ходит развитие неустойчивости и для таких тече-

ний. 

Данная работа не ставит целью изучение нахож-

дения порога неустойчивости и сравнение его зна-

чения с результатами линейной теории [14, 15], по-

этому характер возникновения неустойчивости и её 

развитие подлежит дальнейшему изучению.  

Алгоритм LBM не позволяет провести модели-

рования для рассматриваемых чисел Рейнольдса 

для случая свободной недеформируемой поверхно-

сти по причине превышения значений получаемых 

продольных компонент скорости безразмерной 

скорости звука. Соответственно, для алгоритма пе-

рестает выполняться критически важное условие 

 
а 

 
б 

Рис. 5. Развитие неустойчивости Кельвина-Гельмгольца при 𝑅𝑒 = 10584 и 𝐷𝑎 = 10−2.  Приведены 

мгновенные распределения продольной компоненты скорости (а) и вертикальной компоненты скоро-

сти (б), масштаб по осям не соблюден 
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малости числа Маха (𝑈 ≪ 𝑐𝑠) и развивается числен-

ная неустойчивость.  

6. Заключение 

В данной работе численно исследовано течение 

вязкой жидкости в наклоненном двухслойном ка-

нале конечной ширины, который наполовину за-

полнен пористой средой, при наличии силы тяже-

сти. Моделирование проводилось при постоянном 

значении коэффициента пористости 𝜀 = 0.5 для чи-

сел Дарси в диапазоне 10−4 ÷ 10−2 и для разных 

чисел Рейнольдса.  

Применяемый мезоскопический алгоритм поз-

воляет рассматривать задачу в такой постановке в 

широком диапазоне чисел Рейнольдса. Верифика-

ция метода для двух разных типов граничных усло-

вий для верхней границы показывает хорошее каче-

ственное и количественное соответствие с 

численными результатами, полученными ранее в 

работе [16]. 

Для случая горизонтальных твердых стенок уве-

личение ширины канала приводит к более интен-

сивному течению, при этом интенсификация силь-

нее происходит в области свободной от пористого 

скелета.  

Для числа Рейнольдса ~104 при значении 𝐷𝑎 =
10−2 происходит развитие неустойчивости Кель-

вина-Гельмгольца, что в целом соответствует ана-

литической теории, построенной в [14, 15]. 

В будущем планируется продолжить исследова-

ния подобных систем, модифицировав алгоритм 

включением эффектов тепло- и массопереноса. 

Работа И.В. поддержана бюджетной темой № 

124021600038-9. 
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