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Квантовые точечные контакты (КТК) — квантово-размерные сужения между двумя электро-

проводящими областями. Их ширина сопоставима с длиной волны де Бройля элек-

трона. Квантовые точечные контакты представляют интерес для исследования фундамен-

тальных мезоскопических явлений, в частности, явления квантования баллистической 

проводимости, а также имеют потенциальное применение в качестве чувствительных сенсо-

ров заряда и элементов квантовых вычислительных устройств. В настоящей работе исследо-

ван электронный транспорт в двумерном квантовом точечном контакте, имеющем форму, 

описываемую гиперболическим косинусом (cosh-контакт). Для анализа поведения электро-

нов в узком канале используется техника адиабатического приближения – метод решения 

сложных квантово-механических задач, который предусматривает двухэтапный подход: на 

первом этапе исследуется поведение быстрой подсистемы при фиксированном состоянии 

медленной подсистемы, а на втором этапе учитывается влияние параметров медленной под-

системы на квантовую систему в целом. Методом адиабатического разделения переменных 

получен эффективный гамильтониан медленной подсистемы, описывающий продольное дви-

жение электронов в квантовом cosh-контакте. Вычислен энергетический коэффициент про-

хождения электронов при их рассеянии в сужении квантового cosh-контакта путём точного 

аналитического решения стационарного уравнения Шредингера для эффективного гамильто-

ниана медленной подсистемы. Получено аналитическое выражение для проводимости cosh-

контакта как в случае нулевой, так и конечной температур: показано, что его проводимость 

имеет ступенчатый характер. Дана качественная интерпретация полученного результата: 

каждая ступень соответствует открытию новых квантовых каналов переноса электронов. По-

строены графические зависимости, демонстрирующие влияние температуры на проводи-

мость квантового точечного cosh-контакта. 
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Quantum point contacts (QPCs) are quantum-dimensional constrictions between two electrically 

conductive regions. Their width is comparable to the de Broglie wavelength of an electron. They are 

of interest to those studying fundamental mesoscopic phenomena, particularly quantization of bal-

listic conductivity. Furthermore, QPCs have promising applications as sensitive charge sensors and 

elements of quantum computing devices. In this paper, the author investigates electron transport in 

a two-dimensional QPC whose shape is described by a hyperbolic cosine (cosh-contact). To analyze 

electron behavior in the narrow channel, adiabatic approximation was used. This method offers an 

approximate solution to complex quantum mechanical problems. It involves a two-stage approach. 

First, the behavior of the fast subsystem is analyzed while the slow subsystem remains in a fixed 

state. Then it is studied how the parameters of the slow subsystem affect the entire quantum system. 

Using the method of adiabatic separation of variables, an effective Hamiltonian for the slow subsys-

tem was obtained. This Hamiltonian describes the longitudinal motion of electrons in the quantum 

cosh-contact. The energy transmission coefficient of electrons was calculated using an analytical 

solution of the stationary Schrödinger equation derived for the effective Hamiltonian of the slow 

subsystem. The conductivity of the cosh-contact was computed for both zero and finite temperatures. 

The analytical expression obtained for the conductivity demonstrates its stepwise character. The 

paper offers a qualitative interpretation of this result: each step corresponds to the opening of new 

quantum channels for electron transport. Graphical results showing how temperature affects the con-

ductivity of the quantum point cosh-contact are presented. 
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1. Введение 

Если область соединения двух проводящих ма-

териалов, называемая контактом, мала – ее размер 

лежит в диапазоне от нанометров до нескольких 

микрометров, то она может вместить всего не-

сколько длин волн де Бройля электронов λ [1]. Та-

кие контакты получили название квантовых точеч-

ных контактов (КТК). Фундаментальное значение 

КТК заключается в их способности наглядно де-

монстрировать квантование баллистической прово-

димости в мезоскопических системах. В квантовых 

точечных контактах проводимость проявляет дис-

кретный, квантованный характер, т.е. она может 

принимать только определенные, строго заданные 

значения, которые зависят от фундаментальных 

физических констант. Это один из наглядных при-

меров квантовых эффектов в макроскопическом 

мире. Впервые квантование проводимости в точеч-

ных контактах было экспериментально обнаружено 

в 1988 г. двумя группами ученых, работавших неза-

висимо: голландской группой из Делфтского техно-

логического университета и Philips Research [2] и 

британской группой из Кавендишской лаборатории 

[3]. Их работа основывалась на более ранних иссле-

дованиях британской группы, которая показала, 

как, используя специальные электроды (вентили), 

можно превратить двумерный электронный газ в 

одномерный канал. Сначала это было продемон-

стрировано в кремнии [4], а затем в арсениде галлия 

[5] – материалах, широко используемых в совре-

менной электронике. Помимо фундаментальных 

исследований мезоскопических явлений КТК обла-

дают большим потенциалом для практического 

применения. Квантовые точечные контакты могут 

использоваться в качестве чрезвычайно чувстви-

тельных детекторов заряда [6]. Поскольку проводи-

мость через контакт очень сильно зависит от раз-

мера и формы сужения, любые малейшие 

изменения потенциала (например, вызванные дру-

гими электронами) вблизи контакта будут влиять 

на величину тока. Это делает КТК очень чувстви-

тельными к наличию и движению даже единичных 

электронов. В сфере квантовых вычислений, где 

носителями информации являются квантовые биты 

(кубиты), КТК могут играть роль устройств для 

считывания состояния кубитов [7, 8]. Способность 

КТК точно измерять электрический ток делает их 

перспективным элементом для создания квантовых 

компьютеров на основе твердотельных систем. 

2. Квантовый точечный cosh-контакт  

Рассмотрим простую модель квантового точеч-

ного контакта – двумерный металлический обра-

зец, заполненный двумерным газом свободных 

электронов (2DEG - 2-dimensional electron gas), име-

ющий горизонтальную нижнюю поверхность y=0 и 

верхнюю поверхность, которая описывается кри-

вой: 

𝑦𝑎,𝑏(𝑥) = 𝑏 ⋅ cosh (
𝑥

𝑎
) . (2.1) 
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Рис. 1. Сечение квантового точечного cosh-

контакта плоскостью z=0. Металл соот-

ветствует области, закрашенной серым 

цветом. Координаты x и y отмасштабиро-

ваны к характерной длине де Бройля элек-

трона λ. Отношение параметров a/b = 100. 

Будем считать, что верхняя поверхность кон-

такта искривлена слабо, т. е. 𝑏 ≪ 𝑎. Контакт такой 

формы будем называть cosh-контактом. Сечение 

контакта в плоскости 𝑧 = 0 изображено на рис. 1. В 

рассматриваемой модели зависимости физических 

величин от координаты z отсутствуют. Целью 

настоящей работы является исследование рассея-

ния электронов в квантовом контакте такой формы 

и вычисление проводимости данного контакта. 

3. Адиабатическое приближение  

Условие 𝑏 ≪ 𝑎 позволяет использовать метод 

стационарного адиабатического приближения при 

исследовании рассеяния электрона в таком кон-

такте. В этом методе предполагается наличие в си-

стеме быстрых степеней свободы 𝑞𝑓⃗⃗⃗⃗  и медленных 

степеней свободы  𝑞𝑠⃗⃗  ⃗, описываемых квантово-ме-

ханически, при этом гамильтониан системы пред-

ставляет собой сумму гамильтониана быстрой под-

системы 𝐻(𝑓), зависящего от положения медленной 

подсистемы как от параметра, и гамильтониана 

медленной подсистемы 𝐻(𝑠) [9]: 

𝐻 = 𝐻(𝑠)(𝑞𝑠⃗⃗  ⃗) + 𝐻(𝑓)(𝑞𝑓⃗⃗⃗⃗ , 𝑞𝑠⃗⃗  ⃗). (3.1) 

Такое разделение переменных допустимо при сле-

дующем условии: 

𝛥𝐸(𝑓) ≫ 𝛥𝐸(𝑠), (3.2)  

𝛥𝐸(𝑓) ≈ 𝐸(𝑁+1),𝑛 − 𝐸𝑁,𝑛 , 

𝛥𝐸(𝑠) ≈ 𝐸𝑁,(𝑛+1) − 𝐸𝑁,𝑛. 

где N, n — номера уровней энергий, а 𝛥𝐸(𝑓,𝑠) — ха-

рактерные расстояния между уровнями энергии 

быстрой и медленной подсистем соответственно. 

Прежде чем использовать адиабатическое прибли-

жение для cosh-контакта, заметим, что если бы ши-

рина контакта была постоянной, т. е. контакт пред-

ставлял собой полосу металла 𝑦 ∈ (−𝑦0 2⁄ ; 𝑦0 2⁄ ), 

то переменные x и y разделялись бы, волновая 

функция и энергия электрона двумерного электрон-

ного газа с продольным импульсом p представля-

лись бы в виде: 

𝜓𝑁,𝑝(𝑥, 𝑦) = 𝑒𝑖𝑝𝑥 ⋅ √
2

𝑦0

sin (
𝜋𝑁

𝑦0

(𝑦 −
𝑦0

2
)) (3.3) 

𝐸𝑁,𝑝 =
𝑝2

2𝑚
+

𝜋2𝑁2ℏ2

2𝑚𝑦0
2 ,  𝑁 = 1,2, … (3.4) 

В рассматриваемой задаче ширина контакта 

плавно зависит от координаты x в соответствии с 

формулой (2.1), в адиабатическом приближении 

быстрая подсистема соответствует поперечному 

движению (вдоль оси y). Зафиксируем координату 

x и решим задачу для быстрой подсистемы. Реше-

ние записывается следующим образом: 

𝜓𝑁
(𝑓)

(𝑦, 𝑥) = 

= √
2

𝑦𝑎,𝑏(𝑥)
sin [

π𝑁

𝑦𝑎,𝑏(𝑥)
(𝑦 −

𝑦𝑎,𝑏(𝑥)

2
)] , (3.6) 

𝐸𝑁
(𝑓)

(𝑥) =
π2𝑁2ℏ2

2𝑚𝑦𝑎,𝑏
2 (𝑥)

,  𝑁 = 1,2, … (3.7) 

Тогда для одномерного продольного движения 

можно записать эффективный гамильтониан: 

𝐻𝑒𝑓𝑓
(𝑠) =

𝑝2

2𝑚
+

π2𝑁2ℏ2

2𝑚𝑦𝑎,𝑏
2 (𝑥)

. (3.8) 

4. Точное решение задачи рассеяния 

для эффективного гамильтониана 

Для контакта, верхняя поверхность которого 

описывается формулой (2.1), уравнение Шредин-

гера для одномерного продольного движения в со-

ответствии с эффективным гамильтонианом (3.8) 

принимает вид: 

−
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2
+

π2𝑁2ℏ2

2𝑚𝑏2 cosh2 (
𝑥
𝑎
)
𝜓 = 𝐸𝜓; (4.1) 

𝐸 =
ℏ2𝑘2

2𝑚
. 

Получим точное решение одномерного уравне-

ния Шредингера с таким эффективным потенциа-

лом. Уравнение (4.1) сводится к дифференциаль-

ному уравнению вида [10]: 

𝑞(1 − 𝑞)𝑓′′(𝑞) + (𝑐 − (𝑎 + 𝑏 + 1)𝑞)𝑓′(𝑞) − 

−𝑎𝑏𝑓(𝑞) = 0,  𝑓(0) = 1. (4.2) 

Регулярным в нуле решением этого уравнения яв-

ляется гипергеометрическая функция 

𝐹1(𝑎, 𝑏, 𝑐;  𝑞).2
  Чтобы избавиться от гиперболиче-

ских функций в исходном уравнении (4.1), сделаем 

подстановку ℎ = tanh 𝑥 𝑎⁄ : 
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𝑑𝜓

𝑑𝑥
=

1

𝑎 cosh2 𝑥
𝑎

𝑑𝜓

𝑑ℎ
=

1

𝑎
(1 − ℎ2)

𝑑𝜓

𝑑ℎ
, 

𝑑2𝜓

𝑑𝑥2
=

1

𝑎2
(1 − ℎ2)

𝑑

𝑑𝑦
[(1 − ℎ2)

𝑑𝜓

𝑑ℎ
], 

ℏ2

2𝑚𝑎2

𝑑

𝑑ℎ
[(1 − ℎ2)

𝑑𝜓

𝑑ℎ
] + 

+(
π2𝑁2ℏ2

2𝑚𝑏2
−

𝐸

1 − ℎ2
)ψ(ℎ) = 0 (4.3) 

Уравнение (4.3) имеет три особенности в точках 

ℎ = {±1,∞}. Выполним линейное преобразование 

𝑞 =
1−ℎ

2
∈ (0; 1), при котором точки {±1,∞} пере-

ходят в {0, 1,∞}, и перейдём к безразмерным пара-

метрам: 

𝑞(1 − 𝑞)𝜓′′ + (1 − 2𝑞)𝜓′ − 

−(𝑢 −
𝑘2𝑎2

4𝑞(1 − 𝑞)
)𝜓 = 0, (4.4) 

𝑢 =
𝜋2𝑁2𝑎2

𝑏2
. 

Исследуем поведение решения уравнения (4.4) 

вблизи особенностей. В окрестности 𝑞 = 0 уравне-

ние (4.4) принимает вид уравнения Эйлера, реше-

ние которого можно найти степенной подстанов-

кой: 

𝜓′′ +
1

𝑞
𝜓′ +

𝑘2

4𝑞2
= 0, (4.5) 

𝜓(𝑞) ≈ 𝑒±𝑖
𝑘
2 , 𝑞 ≪ 1. (4.6) 

Аналогичный результат получается при исследова-

нии сингулярного поведения решения уравнения 

(4.4) вблизи 𝑞 = 1. Это обосновывает подстановку 

𝜓(𝑞) = (𝑞(1 − 𝑞))
−𝑖𝑘/2

𝜒(𝑞), которая приводит 

уравнение (4.4) к гипергеометрическому виду: 

𝑞(1 − 𝑞)𝜒′′(𝑞) + (1 − 𝑖𝑘)(1 − 2𝑞)𝜒′(𝑞) − 

−((
1

2
− 𝑖𝑘)

2

− 𝑢 −
1

4
)𝜒(𝑞) = 0. (4.7) 

Чтобы привести уравнение (4.7) к виду уравне-

ния (4.2), выразим u через вспомогательный пара-

метр s согласно формуле: 

𝑢 =  𝑠(𝑠 + 1), 

𝑠 =
1

2
(√1 + 4𝑢 − 1). (4.8) 

Параметры получившейся гипергеометрической 

функции 𝐹1(𝑎, 𝑏, 𝑐; 𝑞):2
   

𝑎 = −𝑖𝑘 − 𝑠;   𝑏 = −𝑖𝑘 + 𝑠 + 1;  𝑐 = −𝑖𝑘 + 1. (4.9) 

Тогда общее решение уравнения (9) записывается 

следующим образом: 

𝜓(𝑞) = (𝑞(1 − 𝑞))
−𝑖𝑘/2

×   

× 𝐹12
 (−𝑖𝑘𝑎 − 𝑠,−𝑖𝑘𝑎 + 𝑠 + 1;−𝑖𝑘𝑎 + 1; 𝑞), (4.10) 

𝑞 =
1

2
(1 − tanh(𝑥/𝑎)). 

Исследуем асимптотику решения (4.10), чтобы 

проверить, что оно является решением поставлен-

ной задачи рассеяния. При 𝑥 → +∞, 𝑦 =
tanh 𝑥 𝑎⁄ ≈ 1 − 2𝑒−2𝑥/𝑎, следовательно, 𝑞 ≈
𝑒−2𝑥/𝑎 → 0 гипергеометрическая функция 

 2𝐹1(… , 𝑞)  ≈ 1. Поэтому: 

𝜓(𝑥 → +∞) ≈ 𝑒𝑖𝑘𝑥 . (4.11) 

Действительно, асимптотика (4.11) содержит 

только прошедшую волну, т.е. соответствует задаче 

рассеяния электрона, движущегося от источника к 

рассеивателю в положительном направлении оси x. 

Найдём асимптотику при 𝑥 → −∞, тогда 𝑞 ≈ 1 −
 𝑒2𝑥/𝑎 → 1. Для этого потребуется асимптотика ги-

пергеометрической функции вблизи единицы, где у 

неё есть особенность. Поэтому воспользуемся тож-

деством, связывающим значения гипергеометриче-

ской функции в точках q и 1−q [11]: 

 2𝐹1(𝑎, 𝑏; 𝑐; 𝑞) = (4.12) 

=
Γ(𝑐)Γ(𝑐 − 𝑎 − 𝑏)

Γ(𝑐 − 𝑎)Γ(𝑐 − 𝑏)
 × 

× 𝐹2
 

1(𝑎, 𝑏; 𝑎 + 𝑏 + 1 − 𝑐; 1 − 𝑞) + 

+
Γ(𝑐)Γ(𝑎 + 𝑏 − 𝑐)

Γ(𝑎)Γ(𝑏)
(1 − 𝑞)𝑐−𝑎−𝑏 × 

×  𝐹2
 

1(𝑐 − 𝑎, 𝑐 − 𝑏; 𝑐 + 1 − 𝑎 − 𝑏; 1 − 𝑞). 

Поскольку 𝑞 ≈ 1, в правой части тождества гипер-

геометрические функции раскладываются как 

 2𝐹1(… ,1 − 𝑞) ≈ 1, поэтому асимптотика определя-

ется коэффициентами с гамма-функциями и  

(1 − 𝑞)𝑐−𝑎−𝑏 = (1 − 𝑞)𝑖𝑘𝑎 ≈ 𝑒2𝑖𝑘𝑥 .  

Пользуясь тем, что (𝑞(1 − 𝑞))
−𝑖𝑘𝑎/2

≈ 𝑒−𝑖𝑘𝑥, мы 

получаем асимптотику волновой функции при 𝑥 →
− ∞, которая содержит падающую и отражённую 

волну, что соответствует качественным соображе-

ниям о рассеянии электрона: 

𝜓(𝑥 → −∞) =
Γ(−𝑖𝑘𝑎 + 1)Γ(𝑖𝑘𝑎)

Γ(−𝑖𝑘𝑎 − 𝑠)Γ(−𝑖𝑘𝑎 + 𝑠 + 1)
𝑒𝑖𝑘𝑥 + 

+
Γ(−𝑖𝑘𝑎 + 1)Γ(𝑖𝑘𝑎)

Γ(𝑠 + 1)Γ(−𝑠)
𝑒−𝑖𝑘𝑥 . (4.13) 

Вычислив квадрат модуля отношения коэффи-

циентов волновой функции (4.13), воспользовав-

шись соотношениями на гамма-функции Γ(𝑧∗) =

Γ(𝑧∗),  Γ(𝑧)Γ(1 − 𝑧) =
π

sin π𝑧
,  Γ(𝑧 + 1) = 𝑧Γ(𝑧) и 

вернувшись к исходным параметрам, получаем 

энергетический коэффициент прохождения: 
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𝐷𝑁(𝐸) = (4.14) 

=

sinh2 (
𝜋𝑎√2𝑚𝐸

ℏ
)

sinh2 (
𝜋𝑎√2𝑚𝐸

ℏ
) + cosh2 (

𝜋
2

√4𝜋2𝑁2 𝑎2

𝑏2 − 1)

. 

График зависимости коэффициента прохожде-

ния от энергии электрона изображён на рис. 2. При 

𝑏 ≪ 𝑎 коэффициент прохождения 𝐷𝑁(𝐸) через по-

тенциальный барьер cosh-контакта изменяется от 

нуля до единицы в узкой области изменения энер-

гии и практически представляет собой ступенчатую 

функцию со скачком в точке 𝐸𝑁 = ℏ2𝜋2𝑁2 2𝑚𝑏2⁄ . 

Поэтому при 𝑏 ≪ 𝑎 коэффициент прохождения мо-

жет быть записан через ступенчатую функцию 

Хевисайда 𝜃: 

𝐷𝑁(𝐸) ≈ 𝜃(𝐸 − 𝐸𝑁),

𝐸𝑁 =
ℏ2𝜋2𝑁2

2𝑚𝑏2
. (4.15)

 

 

Рис. 2. График зависимости коэффициента 

прохождения от энергии электрона. Энер-

гия выражена через безразмерную величину 

𝜀 = 𝐸/𝐸1, где 𝐸1 = ℏ2𝜋2 2𝑚𝑏2⁄ . График по-

строен для отношения параметров a/b = 10, 

квантового числа N=1 

Следует отметить, что коэффициент прохождения 

для рассмотренного потенциала относительно про-

сто вычисляется в квазиклассическом приближе-

нии [12]. При достаточно больших энергиях элек-

трона квазиклассическое соотношение 

великолепно воспроизводит точный результат 

(4.14). 

5. Проводимость cosh-контакта 

Перейдём к вычислению проводимости кванто-

вого cosh-контакта. Сначала рассмотрим случай ну-

левой температуры T=0. Запишем плотность тока 

электронов 𝑗𝑁
(→)

 через контакт слева направо при 

нулевой температуре с учётом двукратного вырож-

дения по спину: 

𝑗𝑁
(→)

=
𝑒

𝑉
∫

2𝑑𝑝 𝐿

2πℏ

∞

−∞

 𝑣𝑥𝑓(𝐸 − 𝐸𝐹)𝐷𝑁(𝐸). (5.1) 

Здесь e – заряд электрона,  vx — его скорость, f — 

функция распределения Ферми,  𝐸𝐹  — энергия 

Ферми, L — длина участка сужения контакта вдоль 

оси x, S — площадь его поперечного сечения в 

окрестности сужения при x=0, V = LS — объём. При 

расчёте проводимости коэффициент прохождения 

𝑇𝑁(𝐸) аппроксимируем функцией Хевисайда со-

гласно (4.15). Тогда, с учётом равенства dE = vxdp, 

выражение для тока 𝐽𝑁 = 𝑗𝑁S можно записать в виде: 

𝐽𝑁
(→)

=
𝑒

πℏ
∫ 𝑑𝐸

∞

𝐸𝑁

 𝑓(𝐸 − 𝐸𝐹). (5.2) 

Если справа сужения приложен слабый потенциал 

𝜑, то ток через контакт справа налево запишется в 

виде 

𝐽𝑁
(←)

=
𝑒

πℏ
∫ 𝑑𝐸

∞

𝐸𝑁

 𝑓(𝐸 − 𝐸𝐹 − 𝑒𝜑). (5.3) 

Из выражений (5.2) и (5.3) находим проводимость 

контакта, учитывая при этом, что функция Ферми 

при нулевой температуре представляет собой про-

сто ступеньку при 𝐸 = 𝐸𝐹: 

σ𝑁 =
𝑒2

πℏ
∫ 𝑑𝐸

∞

𝐸𝑁

𝑑𝑓(𝐸 − 𝐸𝐹 − 𝑒𝜑)

𝑑𝐸
= 

=
𝑒2

πℏ
∫ 𝑑𝐸

∞

𝐸𝑁

δ(𝐸 − 𝐸𝐹 − 𝑒𝜑). (5.4) 

Если EN < EF + 𝑒𝜑 < EN+1, то в аргументе дельта-

функции срабатывают N квантовых чисел и кванто-

вая проводимость равна: 

σ𝑁 = 𝑁
𝑒2

πℏ
=

𝑝𝐹𝑏

𝜋ℏ
𝐺𝑞 , 

𝑝𝐹 = √2𝑚𝐸𝐹 (5.5) 

𝐺𝑞 =
𝑒2

πℏ
. (5.6) 

Значит, при повышении напряжения проводимость 

в соответствии с (5.5) растёт скачкообразно, каж-

дый раз повышаясь на величину кванта проводимо-

сти 𝐺𝑞 ≈ 7.75 ∙ 10−5 S. При этом на каждой сту-

пеньке проводимость постоянная, т. е. выполняется 

закон Ома.  

Теперь рассмотрим случай конечной темпера-

туры T, малой по сравнению с энергией Ферми EF. 

Аналогично (5.4) вычисляем проводимость в этом 

случае: 

σ𝑁 = 𝐺𝑞 ∫ 𝑑𝐸
∞

𝐸𝑁

∂𝑓(𝐸 − 𝐸𝐹 − 𝑒𝜑)

∂𝐸
= 

=
𝐺𝑞

exp (
𝐸𝑁 − 𝐸𝐹 − 𝑒𝜑

𝑇
) + 1

. (5.7) 
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Полная квантовая проводимость 𝜎 контакта при 

конечной температуре выражается через сумму 

сходящегося числового ряда: 

𝜎 = 𝐺𝑞 ∑
1

exp [
1
𝑡
(
𝑁2

𝑊2 − 1)] + 1

∞

𝑁=1

, (5.8)  

𝑡 =
𝑇

𝐸𝐹

, 

𝑊 = 𝑏
√2𝑚(𝐸𝐹 + 𝑒𝜑)

𝜋ℏ
. 

Здесь введён безразмерный температурный пара-

метр t (𝑡 ≪ 1). Также введён безразмерный пара-

метр W, характеризующий ширину сужения 𝑏 и 

приложенный к контакту потенциал 𝜑. На рис. 3 

изображены графики зависимости проводимости 𝜎 

от параметра W при различных температурах. Сту-

пенчатый характер проводимости можно каче-

ственным образом объяснить в терминах открытых 

и закрытых каналов переноса заряда при достиже-

нии пороговых значений параметра W (например, 

путём повышения напряжения на контакте), соот-

ветствующих различным N и, соответственно, энер-

гиям 𝐸𝑁 = ℏ2𝜋2𝑁2 2𝑚𝑏2⁄  [13]. Если W → 0, то EF 

+𝑒𝜑 < E1, поэтому N = 0 и электроны не могут 

пройти через сужение контакта. Если E1 < EF +𝑒𝜑 

< E2, то открыт один канал и 𝜎 = Gq. При E2 < 

EF+𝑒𝜑 < E3 открыто два канала, поэтому 𝜎 = 2Gq, и 

т.д. Таким образом, проводимость сужения кванту-

ется в единицах Gq. Полученное для cosh-контакта 

квантование проводимости является общей особен-

ностью квантовых точечных контактов различных 

форм и представляет собой известное квантовое ме-

зоскопическое явление. Графические зависимости, 

построенные из соотношения (5.8) и приведённые 

на рис. 3, демонстрируют, что с увеличением тем-

пературы происходит сглаживание ступенчатого 

поведения проводимости и переход к линейному 

режиму при больших значениях параметра W. 

 

(а) 

       

(б) 

   
 

(в) 

     
 

(г) 

Рис. 3. Квантование проводимости  𝜎 при изменении параметра W для различных температурных 

параметров t: (a) t =0; (б) t =0.01; (в) t =0.05; (г) t =0.1. Проводимость 𝜎 показана в единицах квантов 

проводимости 𝐺𝑞  
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6. Заключение 

Проведенное исследование электронного транс-

порта в квантовом точечном cosh-контакте позво-

лило получить аналитические выражения для коэф-

фициента прохождения через сужение и для 

проводимости, которая имеет ступенчатый, кванто-

ванный характер. Было показано, что адиабатиче-

ское приближение, а также точное решение стаци-

онарного уравнения Шредингера для эффективного 

гамильтониана медленной подсистемы являются 

эффективными методами для описания поведения 

электронов в квантовых точечных контактах. Выяв-

лено влияние температуры на проводимость, за-

ключающееся в сглаживании ступенек и переходе к 

линейному режиму при приложении достаточно 

большого напряжения. Полученные результаты 

подтверждают значение КТК в изучении квантовых 

явлений в мезоскопических системах. Однако КТК 

представляют интерес не только как объекты для 

фундаментальных исследований: уникальные свой-

ства этих наноструктур открывают перспективы 

для различных применений в современной электро-

нике.  

Помимо рассмотренных в данной работе дву-

мерных проводящих сужений, которые на практике 

изготавливаются литографическим методом, из-

вестны альтернативные варианты реализации кван-

товых точечных контактов. Например, в работе [2] 

описана техника расщеплённого затвора (split-gate 

technique). В этом методе два массивных электрода 

соединяют слоем двумерного электронного газа, 

сформированного в области полупроводникового 

гетероперехода. Затем сверху к двумерному элек-

тронному газу подводят электроды, выполненные в 

виде пластин, играющие роль затворов. При прило-

жении напряжения на затворы электроны выталки-

ваются из областей вблизи затворов, таким обра-

зом, эти области становятся недоступными для 

электронов, и формируется сужение в двумерном 

электронном газе. Изменяя величину напряжения 

на затворах, можно регулировать недоступную для 

электронов область. Такие точечные контакты с пе-

рестраиваемой геометрией представляют интерес 

для дальнейших теоретических исследований. 

Список литературы 

1.  van Houten H., Beenakker C. Quantum point con-

tacts // Physics Today. 1996. Vol. 49. N. 7. P. 22–

27. DOI: 10.1063/1.881503 

2.  Wees B. J. V., van Houten H., Beenakker C. W. J. et 

al. Quantized conductance of point contacts in a 

two-dimensional electron gas // Physical Review 

Letters. 1988. Vol. 60. P. 848–850. DOI: 

10.1103/PhysRevLett.60.848 

3.  Wharam D. A., Thornton T. J., Newbury R. et al. 

One-dimensional transport and the quantisation of 

the ballistic resistance // Journal of Physics C. 1988. 

Vol. 21. No. 8. P. L209–L214. DOI: 10.1088/0022-

3719/21/8/002 

4.  Dean C. C., Pepper M. The transition from two- to 

one-dimensional electronic transport in narrow sili-

con accumulation layers // Journal of Physics C. 

1982. Vol. 15. P. L1287–L1297. DOI: 

10.1088/0022-3719/15/36/005 

5.  Thornton T. J., Pepper M., Ahmed H. et al. One-di-

mensional conduction in the 2D electron gas of a 

GaAs-AlGaAs heterojunction // Physical Review 

Letters. 1986. Vol. 56. N. 11. P. 1198–1201. DOI: 

10.1103/physrevlett.56.1198 

6.  Gustavsson S., Leturcq R., Stude M. et al. Electron 

counting in quantum dots // Surface Science Re-

ports. 2009. Vol. 64. N. 6. P. 191–232. DOI: 

10.1016/j.surfrep.2009.02.001 

7.  Elzerman J., Hanson R., van Beveren W. L. et al. 

Single-shot read-out of an individual electron spin 

in a quantum dot // Nature. 2004. Vol. 430. P. 431–

435. DOI: 10.1038/nature02693 

8.  Vandersypen L. M. K., Elzerman J. M., Schou-

ten R. N. et al. Real-time detection of single-elec-

tron tunneling using a quantum point contact // 

Appl. Phys. Lett. 2004. Vol. 85. P. 4394–4396. 

DOI: 10.1063/1.1815041 

9.  Мигдал А. Б. Качественные методы в квантовой 

теории. М.: Наука, 1972. 335 с. 

10. Ландау Л. Д., Лифшиц Е. М. Квантовая меха-

ника. Нерелятивистская теория. М.: Наука, 

1974. 752 с. 

11. Абрамовиц М., Стиган И. Справочник по спе-

циальным функциям. М.: Наука, 1979. 830 с. 

12. Галицкий В. М., Карнаков Б. М., Коган В. И. За-

дачи по квантовой механике. М.: Наука, 1981. 

881 с. 

13. Щелкачёв Н. М., Фоминов Я. В. Электрический 

ток в наноструктурах: кулоновская блокада и 

квантовые точечные контакты. М.: Изд-во 

МФТИ, 2010. 38 c. 

References 

1.  van Houten H., Beenakker C. Quantum point con-

tact. Physics Today, 1996, vol. 49, no. 7, pp. 22–27. 

DOI: 10.1063/1.881503 

2.  Wees B. J. V., Houten H. V., Beenakker C. W. J. 

et al. Quantized conductance of point contacts in a 

two-dimensional electron gas. Physical Review Let-

ters, 1988, vol. 60, pp. 848–850. DOI: 

10.1103/PhysRevLett.60.848 

3.  Wharam D. A., Thornton T. J., Newbury R. et al. 

One-dimensional transport and the quantisation of 

the ballistic resistance. Journal of Physics C, 1988, 

vol. 21, no. 8, pp. L209–L214. DOI: 10.1088/0022-

3719/21/8/002 
4.  Dean C. C., Pepper M. The transition from two- to 

one-dimensional electronic transport in narrow sili-
con accumulation layers. Journal of Physics C, 

https://doi.org/10.1063/1.881503


28 Н. Г. Березкин 

1982, vol. 15, L1287–L1297. DOI: 10.1088/0022-
3719/15/36/005 

5.  Thornton T. J., Pepper M., Ahmed H. et al. One-
dimensional conduction in the 2D electron gas of a 
GaAs-AlGaAs heterojunction. Physical Review 
Letters, 1986, vol. 56, no. 11, pp. 1198–1201. DOI: 
10.1103/physrevlett.56.1198 

6.  Gustavsson S., Leturcq R., Stude M. et al. Electron 
counting in quantum dots. Surface Science Reports, 
2009, vol. 64, no. 6, pp. 191–232. DOI: 
10.1016/j.surfrep.2009.02.001 

7.  Elzerman J., Hanson R., van Beveren W. L. et al. 
Single-shot read-out of an individual electron spin 
in a quantum dot. Nature, 2004, 430, p. 431–435, 
DOI: 10.1038/nature02693 

8.  Vandersypen L. M. K., Elzerman J. M., Schou-
ten R. N. et al. Real-time detection of single-elec-
tron tunneling using a quantum point contact. Appl. 
Phys. Lett., 2004, vol. 85, pp. 4394–4396 DOI: 
10.1063/1.1815041 

9.  Migdal A. B. Qualitative Methods in Quantum The-

ory. Boulder: Westview Press, 1977. 464 p. 

10. Landau L. D., Lifshitz E. M. Quantum Mechanics: 

Non-Relativistic Theory. Oxford: Butterworth-

Heinemann, 1981. 689 p. 

11. Abramowitz M., Stegun I. A. Handbook of Mathe-

matical Functions. Washington D.C.: National Bu-

reau of Standards, 1972. 1060 p. 

12. Galitskii V. M., Karnakov B. M., Kogan V. I. 

Zadachi po kvantovoi mekhanike [Problems in 

Quantum Mechanics]. Moscow: Nauka, 1981. 

881 p. (In Russian) 

13. Shchelkachev N. M., Fominov Ia. V. Elektricheskii 

tok v nanostrukturakh: kulonovskaia blokada i 

kvantovye tochechnye kontakty [Electric Current in 

Nanostructures: Coulomb Blockade and Quantum 

Point Contacts] Moscow: MIPT, 2010. 38 p. (In 

Russian) 

 

 

Просьба ссылаться на эту статью в русскоязычных источниках следующим образом: 

Березкин Н. Г. Адиабатический электронный транспорт в квантовом точечном cosh-контакте // Вестник 

Пермского университета. Физика. 2025. № 1. С. 21–28. doi: 10.17072/1994-3598-2025-1-21-28 

 

Please cite this article in English as: 

Berezkin N. G. Adiabatic electron transport in a quantum point cosh-contact. Bulletin of Perm University. Physics, 

2025, no. 1, pp. 21–28. doi: 10.17072/1994-3598-2025-1-21-28 

 

 

Сведения об авторах 

Николай Геннадиевич Березкин, лаборант-исследователь дизайн-центра квантового проектирования Наци-

онального исследовательского технологического университета МИСиС, стажёр-исследователь группы 

квантовых вычислений на сверхпроводниках Российского квантового центра, магистрант Московского 

физико-технического института; Институтский пер., 9, Долгопрудный, 141700 

 

Author information 

Nikolay G. Berezkin, Laboratory Researcher at the Design Center for Quantum Engineering at the National Uni-

versity of Science and Technology MISIS; Intern Researcher in the Group of Quantum Computing on Supercon-

ductors at the Russian Quantum Center; Master's Student at the Moscow Institute of Physics and Technology; 9, 

Institutsky pereulok, Dolgoprudny, 141700, Russia  
 


