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Аннотация. На юге криолитозоны мерзлота, за редким исключением, приурочена к бугристым торфяни-

кам. Для прогноза изменения ландшафтов под влиянием потепления и организации мониторинга необходимы 

точные данные о распространении торфяников и занимаемой ими площади. Однако крупномасштабные карты, 

на которых отмечено распространение мерзлых торфяников, очень редки. Нами проведено картографирование 

мерзлых торфяников в районе Сибирских Увалов в зоне островного распространения многолетнемерзлых пород 

(ММП). В ходе полевых исследований были выделены участки с мерзлыми грунтами, проведены замеры темпе-

ратурного режима и глубины протаивания. Отмечено, что крупнобугристые торфяники сильнее прогреваются 

летом и охлаждаются зимой. Температура грунта на глубине нулевых теплооборотов близка к 0 °С. В качестве 

источника данных при картографировании использованы спутниковые снимки Landsat.  Тестирование различных 

методов обработки изображений показало, что наибольшая точность распознавания достигнута при использова-

нии метода Random Forest (значение коэффициента χ «каппа» – 0,96). Повторное картографирование с использо-

ванием снимка за другой год показало высокое сходство: различия выделенных типов поверхности составили 

менее 2 %, что доказало эффективность метода. Согласно построенным картам, торфяники занимают примерно 

четверть обследованного участка. Это один из самых крупных массивов мерзлых торфяников в зоне островного 

распространения мерзлоты. Несмотря на то, что участок расположен в зоне крупнобугристых болот, крупнобуг-

ристые торфяники встречаются примерно в три раза реже, чем плоскобугристые, что косвенно говорит об их 

слабой устойчивости. 
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Abstract. In the south of the cryolithozone, permafrost, with rare exceptions, is confined to palsas. Accurate data on 

the distribution of palsas and on the area occupied by them is needed to predict changes in landscapes under the influence of 

warming and to organize monitoring. However, large-scale maps showing the spread of palsas are very rare. We have 

mapped palsas in the area of Siberian Ridges in the zone of island distribution of permafrost. In the course of field research, 

areas with frozen soils were identified, temperature conditions and thawing depth were measured. High-mound palsas were 

noted to warm up to a greater extent in the summer and cool down in the winter. The ground temperature at the depth of zero 

annual amplitude is close to 0°C. Landsat satellite images were used as a data source for mapping. Testing of various image 

processing methods showed that the highest recognition accuracy was achieved using the Random Forest method (the kappa 

coefficient was 0.96). Repeated mapping using an image from another year showed high similarity: the differences in the 

selected surface types were less than 2%, which proved the effectiveness of the method. According to the maps, palsas 

occupy about a quarter of the research area. This is one of the largest arrays of palsas in the zone of island distribution of 

permafrost. Although the site is located in a zone of high-mound peatlands, high-mound palsas are about three times less 

common than flat-mound ones, which indirectly indicates their weak stability. 

Keywords: palsas, climate warming, vegetation cover, classification of satellite images, spectral properties 
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Введение 
В настоящее время в связи с глобальным потеплением климата много внимания уделяется проблеме де-

градации вечной мерзлоты. Наиболее выраженные последствия ожидаются в зоне островного распространения 

ММП, где растет температура в деятельном слое и увеличивается глубина сезонного протаивания [11]. Измене-

ние температурного режима вызывает активизацию термокарста и деградацию мерзлых бугров [26, 30]. Вместе 

с тем нередки противоположные процессы мерзлотного пучения на влагонасыщенных грунтах. Геодинамические 

процессы разрушения мерзлых бугров либо их пучения несут опасность для объектов инфраструктуры нефтедо-

бывающего комплекса. На севере Западной Сибири примерно 25 % трубопроводов приходится на участки с буг-

ристыми болотами [4]. 

Для прогнозирования устойчивости инженерных сооружений и мониторинга температурного режима по-

род необходимо определить расположение и площадь мерзлотных геосистем, а также иметь достоверную инфор-

мацию о температуре пород и глубине сезонного протаивания. Согласно современным мелкомасштабным карто-

графическим построениям, ММП в Западной Сибири распространены в виде изолированных островов примерно 

до 60 параллели [32]. Отдельные мерзлые бугры пучения встречались до 57º с.ш. [5, 6]. Однако крупномасштаб-

ные геокриологические карты, на которых точно обозначены участки распространения ММП в зоне островного 

и спорадического залегания, в настоящее время практически отсутствуют. Исключение составляют карты не-

больших участков в районе размещения мерзлотных стационаров Нового Уренгоя [33], Надыма [25] и Пур-Та-

зовского междуречья [9]. Следует согласиться с мнением о плохой изученности территорий вблизи южной гра-

ницы криолитозоны [6].    

Одним из наиболее эффективных методов определения геокриологических условий является геоботаническая 

индикация. К примеру, в зоне лесотундр тундровая растительность является индикатором мерзлых пород, в то время 

как лесная и высококустарниковая – талых [14]. Определенные растительные ассоциации с высокой достоверностью 

индицируют глубину сезонного протаивания [19]. Растительность чутко реагирует на современные климатические 

изменения: потепление климата приводит в лесотундре к смене кустарничково-лишайниково-сфагновых редин с лин-

зами мерзлых пород талыми кустарничково-пушицево-осоково-сфагновыми болотами [20].    

На юге криолитозоны индикаторами ММП являются торфяники [34]. Приуроченность мерзлоты к торфя-

никам была давно известна естествоиспытателям. Почти сто лет назад было отмечено, что мерзлые крупнобуг-

ристые болота чаще всего встречаются в зоне спорадической мерзлоты [8]. Сохранение мерзлоты в торфяниках 

обусловлено особыми теплофизическим свойствами торфа, который является хорошим теплоизолятором и со-

храняет минусовую температуру пород даже если среднегодовая температура воздуха положительна [7]. По дан-

ным теплофизических подсчетов, ММП под торфом не тают, если среднегодовая температура воздуха не превы-

шает +1,5 °C [29].   

В настоящее время в исследованиях криолитозоны широкое применение находят методы дистанционного зон-

дирования Земли (ДЗЗ). Возрастающая роль дистанционных методов связана с возможностью оперативного получе-

ния информации о наземном объекте для обширных труднодоступных территорий за различные промежутки времени. 

Таким образом, выделив с применением ДДЗ торфяники, можно с высокой достоверностью определить распростра-

нение ММП, подсчитать занимаемую ими площадь и оценить риск повреждения инженерных сооружений.  

Методика распознавания торфяников на аэрофотоснимках была изложена в работах Государственного 

гидрологического института (ГГИ), основанных на многолетних наблюдениях в различных природных зонах За-

падной Сибири [24]. Однако в настоящее время аэрофотоснимки используются мало и вытеснены космосним-

ками, поскольку значительно возросла доступность последних в открытых источниках. Появились новые методы 
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геопространственного моделирования, позволяющие распознавать на космоснимках различные типы поверхно-

сти с высокой точностью. Выделение тех или иных типов поверхности по космоснимкам нашло широкое приме-

нение при анализе нарушенности ландшафтов тундр Западной Сибири [16, 17]. Однако для более южных участ-

ков такие работы редки, а исследователи обычно ограничиваются вычислением вегетационных индексов, по ко-

торым отслеживают климатогенную динамику растительности [13, 31, 36].  

Целью работы было определение оптимальных методов крупномасштабного картографирования мерзлых 

торфяников в южной криолитозоне. Работа основана на результатах геокриологических и геоботанических ис-

следований, проведенных на территории природного парка Нумто (ХМАО – Югра). 

Материалы и методы 

Район исследования 

Для разработки методики картографирования мерзлых торфяников был выбран прямоугольный участок 

10x10 км, расположенный в южной части криолитозоны, на северном макросклоне Сибирских увалов в верховьях 

р. Казым (координаты 63°23’–63°30’ с.ш., 70°38’–70°52’ в.д.). Часть участка лежит в пределах природного парка 

Нумто, часть находится в промышленной разработке – здесь ведется добыча нефти и создана соответствующая 

инфраструктура (добывающие и разведочные скважины, трубопроводы, коридоры коммуникаций). Участок рас-

положен на разделе двух болотных зон – крупнобугристых болот и выпуклых олиготрофных (сфагновых) болот 

[2]. По данным ближайшей метеостанции Юильск, среднегодовая температура воздуха за период 1969–2023 гг. 

составляет –3,5 °С, при этом наблюдается рост температур с скоростью 0,052 °C/год. В последнее десятилетие 

среднегодовая температура варьировала от –4,4 (2014 г.) до +0,5 °С (2020 г.). 

Отличительной особенностью ландшафтов парка Нумто является распространение здесь бугристых мерз-

лых торфяников тундрового типа, которые формируют комплексы площадью до нескольких десятков км2 [3]. 

Выделяют плоскобугристые и крупнобугристые торфяники. Сухие плоскобугристые мерзлые торфяники совер-

шенно непохожи на немерзлые выпуклые торфяные болота таежной зоны. По общему облику ландшафта и струк-

туре растительного покрова они близки к тундрам южного Ямала [1]. Бугры имеют вид плоских «лепешек» вы-

сотой 30–50 см, реже до 70 см, площадь которых может достигать нескольких сотен квадратных метров: кочко-

ватая поверхность бугров, достаточно однообразный растительный покров (кустарничково-лишайниковый), 

включающий пятна [3]. Другим распространенным типом болот являются крупнобугристые торфяники, пред-

ставляющие собой комплексы выпукло-вершинных мерзлых торфяно-минеральных бугров высотой до 12 м и 

переувлажненных понижений, в которых мерзлота обычно отсутствует. Мерзлые торфяники чередуются с не-

мерзлыми сосново-кустарничково-сфагновыми, осоково-пушицевыми, травяно-гипновыми болотами. Дрениро-

ванные участки, сложенные песчаными породами, покрыты разреженными сосновыми кустарничково-лишайни-

ковыми лесами. В долинах рек развиты темнохвойные травяно-моховые леса.  

Полевые исследования 

Распространение мерзлоты и характер растительного покрова были изучены в ходе исследований, прове-

денных в 2018–2023 гг. Наличие мерзлоты и глубина сезонно-талого слоя были определены с применением ме-

таллического щупа. На участках, расположенных в пределах мерзлых торфяников, выполнялись геоботанические 

описания по стандартной методике [22], указывалась степень нарушенности растительного покрова, фиксирова-

лись экзогенные геологические и криогенные процессы – термокарст, подтопление, термоденудация, солифлюк-

ция и т.д. Также нами были определены техногенные нарушения, гари и горельники. На 10 участках были про-

бурены геокриологические скважины, в которых установлены датчики, фиксирующие температуру грунта с ча-

стотой 4 раза в сутки.   

Методика обработки ДДЗ 

Для определения ландшафтной структуры и картографирования мерзлых торфяников была использована 

управляемая классификация спутникового снимка Landsat-9 с разрешением 30 м от 28.07.2022 г. [35] в программ-

ном комплексе QGIS 3.36 с помощью плагина Semi-Automatic Classification Plugin (SCP). Выбор даты снимка 

обусловлен отсутствием облачности и максимальным развитием растительности в вегетационный период. Пред-

варительно была выполнена радиометрическая и атмосферная коррекция.  

Классифицирование осуществлялось на основе мультиспектрального изображения, представленного в 

«естественных цветах» (комбинация каналов 4-3-2), что обусловлено удобством при проведении визуального де-

шифрирования для создания эталонных участков (выборок), используемых в качестве обучения. На космосним-

ках были выделены однородные участки (сегменты), на которых в ходе наземных полевых исследований были 

описаны различные типы поверхности (ТП). В качестве основной таксономической единицы природных ком-

плексов были избраны урочища. Из сегментов площадью 2–5 га были сформированы обучающие выборки – со-

вокупность пикселей, относящиеся к различным ТП.  

Анализ видимой различимости объектов на спутниковом снимке и использование материалов полевых 

наземных исследований позволили выделить 8 основных ТП, формирующих ландшафтную структуру территории: 

крупно- и плоскобугристые мерзлые торфяники; олигомезотрофные переувлажненные болота; олиготрофные бо-

лота с угнетенной сосной; грядово-мочажинные болота; сосново-кедровые среднесомкнутые леса; сосновые лишай-

никовые редкостойные леса; пойменные елово-кедровые леса, водные поверхности. Помимо этого, выделено 

два дополнительных ТП, представляющих собой видоизмененные коренные урочища: гари и горельники,  
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антропогенно нарушенные территории (участки, занятые инфраструктурой нефтедобычи). Пирогенные урочища 

выделяли по изменению спектральных характеристик при помощи синтеза каналов 7-5-3 для более наглядного 

представления горелых территорий.  

В работе было рассмотрено несколько алгоритмов формирования типов поверхности – Random Forest, 

Minimum Distance и Spectral Angle Mapper. Постобработка итоговых изображений включала вычисление досто-

верности обработанных растров и выявление площади полученных ТП. Для более качественной демонстрации 

результата были использованы инструменты геообработки «отсеивание» при минимальном заданном пороговом 

значении и «редактор растров». Помимо этого, для анализа различимости выделенных ТП по спектральным кри-

вым были получены коэффициенты спектральной яркости (КСЯ). 

Результаты  

Геокриологические условия и геоботаническая характеристика  
Замеры в геокриологических скважинах показали, что температура мерзлых пород в торфяниках на глубине 

годовых нулевых амплитуд (10 м) составляла от –0,1 до –0,47 °С. Преобладает диапазон –0,3…–0,2 ºС. Таким обра-

зом, мерзлые грунты высокотемпературные, неустойчивые к дальнейшему потеплению.    

Годовой ход температур в плоскобугристых и крупнобугристых торфяниках различается. Крупнобугристые 

торфяники сильнее охлаждаются зимой из-за небольшого слоя снега и сильнее прогреваются летом вследствие того, 

что растительный покров на них зачастую разрежен либо полностью отсутствует, слой торфа невелик из-за ветро-

вой эрозии и растрескивания, влагонасыщенность торфа мала.  

Глубина сезонного протаивания изменяется в зависимости от мощности торфа, характера растительности, 

расположения бугров и мочажин. Максимальное протаивание (2,0 м) отмечено на одиночных буграх пучения с ма-

ломощным (0,2–1,0 м), деградировавшим слоем торфа. Геоботаническим индикатором маломощного торфа и глу-

бокого сезонного протаивания является древесный ярус из кедра на вершинах бугров. В случае если торфяные 

почвы на крупных буграх относятся к среднемощным и мощным, сезонное протаивание варьирует от 0,8 до 1,2 м 

(и более, если деградирующий торфяной бугор покрыт трещинами). 

Глубина сезонного протаивания плоскобугристых торфяников зависит от местоположения. В центре круп-

ных плоскобугристых массивов сезонное протаивание составляет 0,5–0,6 м, в краевых частях вблизи мочажин пре-

вышает 1,0 м. Поскольку длина щупа-мерзлотомера составляла 1,6 м, не было возможности точно определить нали-

чие либо отсутствие мерзлоты в мочажинах, но кровля ММП не была в них обнаружена ни разу. Вероятно, моча-

жины являются талыми.      

Растительность крупно- и плоскобугристых торфяников по набору видов – эдификаторов и доминантов – 

сходная. В большинстве случаев основу кустарникового яруса составляет ерник с обилием cop1–cop3. Проективное 

покрытие травяно-кустарничкового яруса составляет 10–40 % с преобладанием багульника, брусники, голубики, 

водяники, мирта болотного. Характерными видами травянистых растений являются морошка, осока шаровидная, 

пушица. Облик фитоценозов определяет доминирование кустистых лишайников Cladina stellaris, C. Rangiferina, 

Cetraria islandica, C. delisei, C. nivalis, C. cucullata, Alectoria ochroleuca. Растительность мочажин осоково-сфагно-

вая, пушицевая, гидрофитнотравяная. Доминантами мочажин являются осоки (Carex chordorrhiza, C. rotundata, 

C. limosa), пушицы (Eriophorum polystachyon, E. russeolum), сфагновые мхи (Sphagnum balticum, Sph. Lindbergii). В 

центре крупных обводненных мочажин в большом количестве встречается вахта (Menyanthes trifoliata). 

Спектральные особенности мерзлых торфяников на ДДЗ  

Одной из поставленных в данной работе задач был выбор оптимального метода картографирования торфя-

ников и в целом ландшафтов с использованием пакетов программ, применяемых для обработки геопространствен-

ных данных. Исходя из этого, было создано классифицированное изображение с различными ТП с характерными 

для них растительными сообществами, а также водными и техногенными объектами (рис. 1). Основным критерием 

построения классифицированного изображения по выделенным ТП являлась максимальная достоверность, рассчи-

тываемая на основе матрицы ошибок [15]. Результат показал максимально высокую достоверность классификации 

при использовании метода Random Forest (99,6 %, значение коэффициента χ «каппа» – 0,96) (табл. 1). Меньшая 

общая точность определена при выборе алгоритмов Minimum Distance и Spectral Angle Mapper, что в немалой сте-

пени обусловлено низкой спектральной разделимостью классов торфяников с редкостойными сосняками кустар-

ничково-лишайниковыми (значение евклидового расстояния < 1, показатель сходства Брея-Кертиса > 90 %). Визу-

ально, а также при сравнении площадей это проявлялось в уменьшении доли торфяников (17–19 %) и увеличении 

площади облесенных территорий в сравнении с результатами по алгоритму классификации Random Forest (25 %) 

(табл. 2). Кроме этого, выявлена частичная ошибка пропуска и присоединения пикселей ерниково-кустарничково-

лишайниковых торфяников с болотными микроландшафтами, что обусловлено соседством данных типов болотных 

комплексов и сходством флористического состава на их границах. В целом для снимков со средним и высоким 

пространственным разрешением при мозаичности растительного покрова актуальной остается проблема наличия 

смешанных пикселей и отсутствия явного доминирования определенного класса [12]. 
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а) б) 

 
Рис. 1. а) спутниковое изображение территории исследования по данным мультиспектральной съёмки Landsat-9; 

б) карта-схема классифицированного растра с выделенными ТП (метод Random Forest): 

1 – водные объекты; 2 – антропогенные объекты; 3 – крупно- и плоскобугристые мерзлые ерниково-кустарнич-

ково-лишайниковые торфяники; 4 – олигомезотрофные травяно-осоково-сфагново-гипновые переувлажненные 

болота; 5 – олиготрофные кустарничково-осоково-сфагновые болота, облесенные угнетенной сосной; 6 – грядово-

мочажинные болотные комплексы с чередованием ерниково-кустарничково-сфагновых гряд и осоково-сфагновых 

обводненных мочажин; 7 – междуречные сосновые зеленомошно-лишайниковые и кедровые, местами листвен-

ничные, кустарничково-зеленомошные и кустарничково-лишайниковые леса; 8 – сосновые лишайниковые редко-

стойные леса; 9 – пойменные елово-кедровые, с примесью берёзы, травяно-кустарничково-зеленомошные и ба-

гульниково-брусничные леса; 10 – горелые участки соснового лишайникового леса 

Fig. 1. a) a satellite image of the research area according to Landsat-9; b) a map of the classified raster with selected surface 

types (Random Forest method): 1 – water bodies; 2 – anthropogenic objects; 3 –dwarf birch-shrub-lichen palsas; 4 – oligo-

mesotrophic grass-sedge-sphagnum-hypnum moss bogs; 5 – oligotrophic shrub-sedge-sphagnum moss bogs forested with 

suppressed pine; 6 – hummock-ridge bog complexes with shrub-sphagnum moss ridges and sedge-sphagnum moss watered 

flarks; 7 – watershed pine green moss-lichen forests and cedar, in places with larch, shrub-green moss, and shrub-lichen 

forests; 8 – pine lichen sparse forests; 9 – floodplain spruce-cedar, in places with birch, grass-shrub-green moss and wild 

rosemary-lingonberry forests; 10 – burnt pine lichen forest areas 

Таблица 1 

Матрица ошибок выделенных классов при использовании различных методов  

классификации спутникового снимка Landsat-9 

The error matrix of the selected classes when using various methods of classifying a Landsat-9 satellite image 

1* 
2* 

3* 4* 5* 6* 
1 2 3 4 5 6 7 8 9 10 

Метод Random Forest. Общая точность – 99,6 %, коэффициент χ «каппа» – 0,96 

1 93 0 0 0 0 0 0 0 0 0 93 0 0 100 

2 0 149 0 0 0 0 0 0 0 0 149 0 0 100 

3 0 0 225 0 0 0 1 0 0 0 226 1 3 99,6 

4 0 0 0 97 0 0 0 0 0 0 97 0 0 100 

5 0 0 1 0 187 0 0 0 0 0 188 1 1 99,5 

6 0 0 0 0 0 68 0 0 0 0 68 0 0 100,0 

7 0 0 2 0 1 0 843 0 1 1 848 5 2 99,4 

8 0 0 0 0 0 0 1 231 0 0 232 1 0 99,6 

9 0 0 0 0 0 0 0 0 87 0 87 0 1 100 

10 0 0 0 0 0 0 0 0 0 138 138 0 1 100 

всего 93 149 228 97 188 68 845 231 88 139 2126 8 8 - 
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Окончание табл. 1 

1* 
2* 

3* 4* 5* 6* 
1 2 3 4 5 6 7 8 9 10 

Метод Minimum Distance. Общая точность – 87,9 %, коэффициент χ «каппа» – 0,81 

1 93 0 0 0 0 0 0 0 0 0 93 0 0 100 

2 0 149 0 0 0 0 0 0 0 0 149 0 2 100 

3 0 0 172 0 0 0 53 0 0 1 226 54 117 76,1 

4 0 0 0 93 0 4 0 0 0 0 97 4 14 95,9 

5 0 0 13 4 166 4 1 0 0 0 188 22 5 88,3 

6 0 2 7 10 1 46 2 0 0 0 68 22 8 67,6 

7 0 0 86 0 1 0 728 25 8 0 848 120 72 85,8 

8 0 0 2 0 0 0 7 217 0 6 232 15 25 93,5 

9 0 0 1 0 3 0 9 0 74 0 87 13 8 85,1 

10 0 0 8 0 0 0 0 0 0 130 138 8 7 94,2 

всего 93 151 289 107 171 54 800 242 82 137 2126 258 258 - 

Метод Spectral Angle Mapper. Общая точность – 85,5 %, коэффициент χ «каппа» – 0,79 

1 93 0 0 0 0 0 0 0 0 0 93 0 0 100 

2 0 149 0 0 0 0 0 0 0 0 149 0 10 100 

3 0 0 122 8 0 17 79 0 0 0 226 104 99 54,0 

4 0 0 22 45 12 6 6 0 6 0 97 52 38 46,4 

5 0 0 0 13 171 0 1 0 3 0 188 17 12 91,0 

6 0 0 17 10 0 40 1 0 0 0 68 28 25 58,8 

7 0 0 54 3 0 1 782 3 5 0 848 66 104 92,2 

8 0 9 0 0 0 0 10 213 0 0 232 19 6 91,8 

9 0 0 0 4 0 0 5 0 78 0 87 9 14 89,7 

10 0 1 6 0 0 1 2 3 0 125 138 13 0 90,6 

всего 93 159 221 83 183 65 886 219 92 125 2126 308 308 - 
* 1 – классы по выборкам, 2 – типы поверхности по классификации и число отнесенных к ним пикселов, 3 – количество 

пикселей в классе, 4 – ошибка комиссии (присоединение), пикселы, 5 – ошибка омиссии (пропуска), пикселы, 4 – точность 

выделения класса, % 

* 1 – classes by regions of interest, 2 – surface types according to classification and the number of pixels assigned to them, 3 – the 

number of pixels in the class, 4 – commission error (joining), pixels, 5 – omission error (skipping), pixels, 4 – accuracy of class 

allocation, % 

 

Для определения правильности выделения торфяников было произведено повторное классифицирование 

исследуемой территории на основе спутникового снимка Landsat-8 от 30.07.2023 г. Общая величина изменчиво-

сти ТП составила менее 2 % (табл. 2). Таким образом, избранный алгоритм позволяет достоверно выделить на 

космоснимках мерзлые бугристые торфяники и фиксировать их последующие изменения, вызванные потепле-

нием климата. 

Таблица 2 

Доля различных ТП в районе исследования, согласно классификации методом Random Forest 

The proportion of different types of surfaces in the research area, according to classification  

by the Random Forest method 

Тип поверхности, по-

лученный при класси-

фикации 

Площади,% Изменение доли пло-

щадей к предыдущему 

году, % 
Landsat-9 от 

28.07.2022 

Landsat-8 от 

30.07.2023 

1 3,62 3,59 -0,03 

2 2,08 2,48 0,40 

3 24,6 26,7 2,07 

4 4,36 4,8 0,44 

5 19,6 17,4 -2,22 

6 3,78 5,24 1,46 

7 31,4 31,1 -0,28 

8 3,85 2,62 -1,23 

9 4,69 4,61 -0,08 

10 2,07 2,07 0 
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Для наилучшего распознавания объектов нами также использовался КСЯ. Спектральные коэффициенты 

яркости являются отношением яркости объекта в данном направлении к яркости эталона (идеального рассеива-

теля) в том же направлении при одинаковом освещении обоих [10]. КСЯ нашли применение при оценке измене-

ния свойств подстилающей поверхности [23], оценке состава растений в агроценозах [27], определении запасов 

кормов на оленьих пастбищах [18]. 

Значения КСЯ мерзлых торфяников в районе исследования составляют во 2 канале (синий) 0,025±0,002 (± 

стандартное отклонение (SD)), в 3 канале (зеленый) 0,039±0,004, в 4 канале (красный) 0,046±0,005, в 5 канале 

(ближний инфракрасный) 0,21±0,021 (рис. 2).  

 

Анализ спектральных кривых 

выделенных ТП показывает, 

что ерниково-кустарничково-

лишайниковые торфяники по 

всем 4 каналам по величине 

КСЯ уступают большинству 

болотных микроландшафтов. 

При сопоставлении яркостных 

характеристик торфяников с 

лесными урочищами важную 

роль имеет степень преоблада-

ния лишайников в напочвен-

ном покрове и сомкнутость 

древостоя – по значению КСЯ 

в видимом диапазоне (2–4 ка-

налы) густые пойменные и во-

дораздельные смешанные леса 

уступают торфяникам, а при-

долинные сосновые лишайни-

ковые редколесья, наоборот, 

Рис. 2. Спектральные кривые по ТП с 2 по 5 каналы классифицированных 

спутниковых изображений Landsat-9, природный парк «Нумто»  

(в виде пределов погрешностей указаны значения стандартного отклонения) 

Fig. 2. Spectral signatures according to the surface types from 2 to 5 bands  

of classified Landsat-9 satellite images, Numto Nature Park  

(the values of the standard deviation are indicated as error limits) 

заметно выше. Однако необхо-

димо отметить, что отличи-

тельной особенностью торфя-

ников является более высокое 

значение КСЯ в ближнем ин-

фракрасном диапазоне спек-

тра, чем для лесных геосистем. 

Спектральная кривая гари в придолинном сосновом лишайниковом редколесье ниже, чем для участков, не 

затронутых пожаром, а при соотнесении с торфяниками характеризуется меньшими значениями КСЯ в 3 и 4 

каналах. Техногенным объектам на песчаных отсыпках присущи самые высокие величины КСЯ. 

Следует отметить, что использование снимков Landsat в картографировании мерзлых торфяников имеет 

ограничения, поскольку небольшое пространственное разрешение не позволяет разделить плоско- и крупнобуг-

ристые торфяники, имеющие различные геокриологические характеристики. Эта задача может быть решена при-

менением космоснимков сверхвысокого разрешения. Выделенные с использованием снимков Landsat торфяники 

были нами проанализированы на снимках сверхвысокого разрешения QuickBird и WorldView2 [28]. Этот анализ 

с привлечением данных полевых ландшафтных описаний позволил разделить участки плоско- и крупнобугри-

стых торфяников, различающихся по геокриологическим условиям, а также выделить участки с длительнопро-

мерзающими породами, залегающими под немерзлыми сосново-кустарничково-сфагновыми и осоково-гипно-

выми болотами. Согласно классификации, проведенной при помощи алгоритма Random Forest, бугристые тор-

фяники занимают четверть территории исследования (25 %). Полученные по снимкам сверхвысокого разрешения 

результаты показали, что 19 % площади занято плоскобугристыми торфяниками, 6 % – крупнобугристыми, т.е. 

соотношение плоскобугристых к крупнобугристым составляет примерно 1:3. На обследованном участке доля 

крупнобугристых торфяников меньше, чем в среднем по региону. По данным исследований ГГИ, микроланд-

шафты плоскобугристой группы занимают в среднем до 60 % площади болот северной тайги и лесотундры [24]. 

Малая площадь, занимаемая крупнобугристыми торфяниками, косвенно подтверждает их меньшую устойчи-

вость к потеплению. Тенденция к росту температур воздуха, увеличению высоты снега, а также увеличение фи-

томассы кустарников и кустарничков, способствующее снегозадержанию, делают неблагоприятным прогноз со-

хранности ММП под крупнобугристыми торфяниками [21]. 

Заключение 

На территории природного парка «Нумто» расположен один из самых крупных южных массивов мерзлых 

бугристых торфяников в зоне островного распространения ММП. Управляемая классификация с высокой степе-

нью точности позволила выделять участки с мерзлыми бугристыми торфяными болотами. Наилучший результат 
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показал метод Random Forest. Отличительной особенностью криогенных геосистем является более низкая спек-

тральная яркость в ближнем инфракрасном диапазоне длин волн при сравнении с другими типами болотных 

комплексов и более высокая при сопоставлении с лесными геосистемами. При анализе различимости природных 

комплексов в районе исследования по спектральным характеристикам наиболее значимым является степень пре-

обладания лишайников в структуре растительности. 
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