Химия

УДК 544.22:621.372.8 DOI: 10.17072/2223-1838-2018-3-369-378

И.В. Петухов, В.И. Кичигин, С.С. Мушинский, М.А. Пермякова, Л.Н. Малинина, А.Б. Волынцев

Пермский государственный национальный исследовательский университет, Пермь, Россия

ВЛИЯНИЕ ОБРАТНОГО ПРОТОННОГО ОБМЕНА НА СТРУКТУРУ И СВОЙСТВА ПРОТОНООБМЕННЫХ СЛОЕВ НА X-СРЕЗЕ КРИСТАЛЛА НИОБАТА ЛИТИЯ

Исследованы изменения структуры и оптических свойств протонообменных слоев на X-срезе ниобата лития в ходе обратного протонного обмена. Показано, что при обратном протонном обмене фазовые превращения в протонообменных слоях происходят быстрее, чем при отжиге при той же температуре, при этом образования частиц к₁-фазы не наблюдается.

Ключевые слова: ниобат лития; волновод; обратный протонный обмен; структура

I.V. Petukhov, V.I. Kichigin, S.S. Mushinsky, M.A. Permyakova, L.N. Malinina, A.B. Volyntsev Perm State University, Perm, Russia

INFLUENCE OF REVERSE PROTON EXCHANGE ON THE STRUCTURE AND PROPERTIES OF PROTON-EXCHANGE LAYERS IN X CUT OF LITHIUM NIOBATE CRYSTAL

The changes in the structure and optical properties of proton-exchange layers during reverse proton exchange were investigated on X cut lithium niobate. It was shown that the phase transformations in proton-exchange layers at reverse proton exchange proceed faster than during annealing at the same temperature; κ_1 phase particles are not formed at reverse proton exchange.

Keywords: lithium niobate; waveguide; reverse proton exchange; structure

[©] Петухов И.В., Кичигин В.И., Мушинский С.С., Пермякова М.А., Малинкина Л.Н., Волынцев А.Б., 2018

Введение

Для создания волноводов различных интегрально-оптических устройств на подложках ниобата лития широко используется протонный обмен [1]. При этом в поверхностном слое ниобата лития часть ионов лития замещается ионами водорода:

$$LiNbO_3 + xH^+ = Li_{1-x}H_xNbO_3 + xLi^+.$$
 (1)

В поверхностном слое, где произошла замена ионов лития на протоны, увеличивается показатель преломления необыкновенного луча (ниобат лития обладает свойством двулучепреломления), благодаря чему создается оптический волновод. Протонный обмен проводят при повышенной температуре (170–250°С). В качестве источника протонов обычно служат расплавы или растворы органических или неорганических кислот [1–3]. Для повышения стабильности оптических характеристик протонообменных волноводов и повышения электрооптического коэффициента обычно проводится отжиг (330–400°С) [4–6].

В результате протонного обмена (ПО) в поверхностном слое ниобата лития создаются высокие деформации и напряжения. Последующий отжиг снижает концентрацию протонов в поверхностном слое и напряжения, но полностью не устраняет все дефекты структуры, возникшие в ходе протонного обмена. По этой причине в ряде случаев используют так называемый мягкий протонный обмен, в ходе которого сразу формируется требуемая структура и глубина волноводного слоя без последующего отжига [7, 8]. Однако такой метод протонного обмена требует повышенных температур и тщательной герметизации реактора, в котором проводится протонный обмен. Также следует учитывать, что поверхностный слой исходного ниобата лития содержит большое количество дефектов, образовавшихся при полировке поверхности кристалла. Эти дефекты, а также искаженная структура поверхностного слоя, сказываются на свойствах ниобата лития и на последующем процессе протонного обмена [9].

Дефекты структуры, сформировавшиеся как при механической обработке ниобата лития, так и при протонном обмене, могут служить местами накопления свободных зарядов, возникающих при изменении температуры, а также вызывают дополнительное рассеяние света, увеличивая оптические потери. Это негативно сказывается на работе интегрально-оптических устройств.

Обратный протонный обмен (ОПО), в ходе которого реакция (1) протекает в обратном направлении [10], позволяет частично «залечить» дефекты поверхностного слоя, образовавшиеся в результате протонного обмена, а также приводит к заглублению оптического волновода. Заметим, что обратный протонный обмен осуществляется в расплавах смеси солей, содержащих ионы лития.

В работе изучено влияние процесса обратного протонного обмена на структуру и некоторые свойства протонообменных слоев на Хсрезе ниобата лития.

Экспериментальная часть

Для проведения исследований использовались кристаллы ниобата лития конгруэнтного состава, X-срез (Crystal Technology). Рабочими образцами служили пластины толщиной 1 мм размером 15х10 мм, вырезанные из вейфера диаметром 76 мм.

Протонный обмен проводился в закрытом циркониевом реакторе в расплаве бензойной кислоты («чда») при температуре 190°С в течение 2 ч. Для обратного протонного обмена использовался расплав эвтектической смеси нитратов 37,5 мол.% LiNO₃, 44,5 мол.% KNO₃, 18,0 мол.% NaNO₃. Обратный протонный обмен проводился последовательно с шагом 1 ч при температуре 330°С в циркониевом реакторе на неотожженных планарных ПОволноводах.

Для исследуемых планарных волноводов определяли профили приращения показателя преломления необыкновенного луча $\Delta n_e(x)$ и значения $\Delta n_e(0)$ на поверхности волноводного слоя. Для определения $\Delta n_e(x)$ и $\Delta n_e(0)$ на планарных волноводах использовали метод модовой спектроскопии. С помошью призменного ввода измеряли эффективные показатели преломления волноводных мод на длине волны $\lambda = 0,633$ мкм. Профиль $\Delta n_e(x)$ по глубине волноводного слоя восстанавливался с помошью обратного Вентцеляметода Крамерса-Бриллюэна [11].

Для визуализации структуры ПО-слоев использовали метод оптической микроскопии (Olympus BX 61) в поляризованном свете с применением методики светлого и темного полей.

Рентгенографические исследования образцов ниобата лития проводились на рентгеновском двухкристальном дифрактометре ДРОН-УМ1 в излучении кобальтового анода с использованием длины волны λ_{β} = 1,62073 Å. Регистрировали $\theta/2\theta$ кривые. Величина деформации определялась **E**33 непосредственно из 0/20 кривых измерением углового расстояния $\Delta \theta$ между положением максимума дифракционного отражения от подложки ниобата лития и максимумом дифракционного отражения от соответствующей фазы H_xLi_{1-x}NbO₃ в соответствии с формулой Вульфа-Брэгга в дифференциальной форме

 $\varepsilon_{33} = -\Delta \theta \operatorname{ctg} \theta$,

где θ – Брэгговский угол отражения, ассоциированный с рассматриваемым семейством кристаллических плоскостей.

Образцы ниобата лития с планарными ПОволноводами также исследовали методом ИКспектроскопии с помощью спектрофотометра Bruker Spectrum Two в частотном диапазоне 400-6000 см⁻¹ с разрешением < 1 см⁻¹.

Результаты и обсуждение

Непосредственно после протонного обмена при температуре 190°С в течение 2 ч формируется двухмодовый волновод глубиной 1,5 мкм, величина приращения показателя преломления (см. таблицу) указывает на то, что он может быть образован β-фазами твердого раствора Li_{1-x}H_xNbO₃ [12]. Это подтверждается результатами ИК-спектроскопии (рис. 1). На ИКспектре поглощения наблюдается расщепленный пик с максимумом 3508 см-1 и широкий размытый пик в области 3000-3400 см⁻¹, соответствующий β₂-фазе. Поскольку протоны β₂фазы в кристаллической решетке ниобата лития занимают случайные положения, их энергия связи в кристаллической решетке варьируется в широких пределах, поэтому увеличение поглощения имеет место в широком диапазоне значений волновых чисел. Асимметричный максимум поглощения, расщепляющийся в верхней части на два пика, обусловлен, вероятно, присутствием β₁-фазы и α-фазы в протонообменных слоях.

Рис. 1. ИК-спектры поглощения протонированного ниобата лития после отжига в течение, ч: а – 0, б – 2

Таблица 1

Приращение показателя преломления Δ*n*_e(0) и глубина волновода δ в зависимости от продолжительности отжига и обратного протонного обмена

ОПО, ч	Отжиг, ч	$\Delta n_e(0)$	δ, мкм
0	0	0,1078	1,50
0	1	0,0872	2,27
0	2	0,0887	2,37

Окончание таблицы

ОПО, ч	Отжиг, ч	$\Delta n_e(0)$	δ, мкм
0	3	0,0842	2,44
1	0	0,0793	2,80
2	0	0,0673	2,61
3	0	0,0709	2,47

Отжиг вызывает увеличение глубины волновода и снижение величины $\Delta n_e(0)$ (см. таблицу). В результате отжига при температуре 330°С первоначально происходит образование низкотемпературной к2-фазы твердого раствора. На это указывают значения $\Delta n_e(0)$ [12] и рентгеноструктурного результаты анализа (рис. 2,а). На кривых качания наблюдается интенсивный максимум, которому соответствует значение $\varepsilon_{33} = 0,0044$, и асимметричный пик, обусловленный наложением пика к1-фазы на пик ниобата лития (рис. 2,б). На $\theta/2\theta$ кривой второго порядка отражения присутствие к₁фазы вызывает появления плеча на ассиметричном пике (рис. 2,б). После отжига также исчезает широкий пик ИК-поглощения, соответствующий β2-фазе (рис. 1,б), уменьшается асимметричность пика поглощения при ~3500 см⁻¹.

Обратный протонный обмен в течение 1 ч приводит к снижению эффективной величины $\Delta n_e(0)$, в то же время по результатам расчетов эффективная глубина волновода несколько увеличивается по сравнению с отожженным при той же температуре образцом (см. таблицу). Данные параметры рассматриваются как эффективные, поскольку при обратном протонном обмене происходит заметное снижение показателя преломления волновода на поверхности, что не учитывается в используемой процедуре восстановления профиля показателя преломления. Увеличение продолжительности ОПО сопровождается уменьшением глубины волновода и снижением значений $\Delta n_e(0)$.

Результаты рентгеноструктурного анализа указывают на то, что при проведении обратного протонного обмена заметно уменьшается доля низкотемпературной κ_2 -фазы по сравнению с долей этой фазы в отожженных образцах (рис. 2, 3). Увеличение продолжительности ОПО вызывает последовательное снижение доли κ_2 -фазы. Величина деформаций κ_2 фазы соответствует деформациям этой фазы, образовавшейся при отжиге, и находится в пределах (4,4–4,6)·10⁻³.

Известно, что в процессе отжига протонообменных слоев происходят следующие фазовые превращения: β_1 , β_2 -фазы $\rightarrow \kappa_2$ -фаза $\rightarrow \kappa_1$ фаза $\rightarrow \alpha$ -фаза [13, 14]. Переход из κ_2 -фазы в κ_1 -фазу при отжиге занимает 8–9 ч. Кривая качания после 3 ч ОПО примерно соответствует кривой качания после 9 ч отжига. Более быстрое снижение концентрации протонов связано с тем, что часть протонов диффундирует не только вглубь образца, как это имеет место при отжиге, но и к его поверхности с последующим переходом протонов в расплав солей. По этой причине протонообменный слой после 3 часов ОПО состоит преимущественно из κ_1 -фазы и α -фазы.

Рис. 2. 0/20 кривые протонированных слоев на кристалле ниобата лития после отжига продолжительностью 2 ч: а – отражение (110); б – отражение (220).

При отжиге в процессе фазового перехода из κ_2 -фазы в κ_1 -фазу из-за большой разницы в величинах напряжений сосуществующих фаз происходит формирование частиц κ_1 -фазы [14]. Релаксация напряжений при фазовом переходе осуществляется за счет образования частиц κ_1 -фазы, которые по мере отжига формируют модулированную структуру.

Образование частиц имеет место уже после 1 ч отжига, после 3 ч отжига на микрофотографиях в поляризованном свете, как на светлопольных, так и темнопольных изображениях, отчетливо видны частицы

к1-фазы и формирующаяся из них модули-

рованная структура (рис. 4).

Рис. 3. θ/20 кривые протонированных слоев на кристалле ниобата лития после ОПО продолжительностью, ч: а, б − 1, в, г − 2, д, е − 3; а, в, д - отражение (110); б, г, е − отражение (220)

б

Рис. 4. Светлопольное (а) и темнопольное (б) изображения протонообменного слоя в поляризованном свете; ПО 190°С, 2 ч, отжиг 330°С 3 ч

В ходе обратного протонного обмена образования частиц к₁-фазы не наблюдалось. Это, вероятно, связано с тем, что в ходе ОПО в поверхностном слое из-за значительного снижения концентрации протонов уменьшаются и напряжения. Именно в тонком поверхностном слое, в котором после протонного обмена имеется наибольшее количество дефектов структуры, будет облегчаться процесс зародышеобразования новой фазы, возникающей при фазовом переходе κ_2 -фазы в κ_1 -фазу в процессе отжига. Можно также предположить, что из-за более быстрого уменьшения концентрации протонов уже после 1 ч обратного протонного обмена в тонком поверхностном слое кристалла ниобата лития существует только α -фаза.

Выводы

1. Показано, что при обратном протонном обмене фазовые превращения в протонообменных слоях происходят быстрее, чем при отжиге при той же температуре.

2. При обратном протонном обмене не наблюдается образования частиц к₁-фазы.

Работа выполнена при финансовой поддержке РФФИ (проект № 17-43-590309 р а).

Библиографический список

- Jackel J., Rice C.E., Veselka J.J. Proton exchange for high-index waveguides in LiNbO₃ // Appl. Phys. Lett. 1982. V.41. N 7. P.607-608.
- Cargo J.T., Filo A.J., Hughes M.C., Kannan V.C., Stevie F.A., Taylor J.A. Characterization of sulfuric acid proton-exchanged lithium niobate // J. Appl. Phys. 1990. V.67. P.627-633.
- De Micheli M., Botineau J., Neveu S., Sibillot P., Ostrowsky D.B., Papuchon M. Independent control of index and profiles in protonexchanged lithium niobate guides // Optics Letters. 1983. V. 8. N 2. P.114-115.
- Suchoski P.G., Findakly T.K., Leonberger F.J. Stable low-loss proton-exchanged LiNbO₃ waveguide devices with no electro-optic degradation // Optics Letters 13 (1988) 1050– 1052.

- Bortz M.L., Fejer M.M. Annealed protonexchanged LiNbO₃ waveguides // Optics Letters 16 (1991) 1844–1846.
- Korkishko Yu.N., Fedorov V.A. Structural and optical characterization of annealed proton exchanged LiNbO₃ optical waveguides // Optical Materials. 5 (1996) 175–185.
- Baldi P., De Micheli M.P., El Hadi K., Nouh S., Cino A.C., Aschieri P., Ostrowsky D.B. Proton exchanged waveguides in LiNbO₃ and LiTaO₃ for integrated lasers and nonlinear frequency converters // Optical Engineering. 37 (1998) 1193–1202.
- Korkishko Yu.N., Fedorov V.A., Feoktistova O.Y. LiNbO3 optical waveguide fabrication by high-temperature proton exchange // J. Lightwave Technol. 18 (2000) 562–568.
- Пономарев Р.С. Структурная модель дрейфовых явлений в интегрально-оптических схемах на основе H_xLi_{1-x}NbO₃ канальных волноводов. Дисс. ... канд. физ.-мат. наук. Пермь, 2014. 148 с.
- Korkishko Yu.N., Fedorov V.A., Morozova T.M., Caccavale F., Gonella F., Segato F. Reverse proton exchange for buried waveguides in LiNbO₃ // J. Opt. Soc. America. A. 1998. V.15. N 7. P.1838–1842.
- 11. Колосовский Е.А., Петров Д.В., Царев А.В. Численный метод восстановления профиля показателя преломления в диффузионных волноводных слоях // Ж. квант. электрон. 1981. Т. 8. № 12. С. 2557–2568.
- Korkishko Yu.N., Fedorov V.A. Structural phase diagram of H_xLi_{1-x}NbO₃ waveguides: the correlation between optical and structural properties // IEEE J. Select. Top. Quant. Electron. 1996. V. 2. № 2. P. 187–196.
- 13. Korkishko Yu. N., Fedorov V. A. Dependences of the refractive indices on the proton concentration in H:LiNbO₃ waveguides // Technical Physics. 1999. V. 44. № 3. P. 307–316.
- 14. Mushinsky S.S., Kichigin V.I., Petukhov I.V., Permyakova M.A., Shevtsov D.I. Structural phase transformations of proton-exchanged layers of lithium niobate during annealing // Ferroelectrics. 2017. V. 508. P. 40–48.

References

- Jackel, J., Rice, C.E. and Veselka, J.J. (1982), "Proton exchange for high-index waveguides in LiNbO₃", *Appl. Phys. Lett.* Vol.41, no. 7. pp. 607–608.
- Cargo, J.T., Filo, A.J., Hughes, M.C., Kannan, V.C., Stevie, F.A. and Taylor, J.A. (1990), "Characterization of sulfuric acid protonexchanged lithium niobate", *J. Appl. Phys.* Vol.67. pp. 627–633.
- De Micheli, M., Botineau, J., Neveu, S., Sibillot, P., Ostrowsky, D.B. and Papuchon, M. (1983), "Independent control of index and profiles in proton-exchanged lithium niobate guides", *Optics Letters*. Vol. 8, no. 2. pp. 114–115.
- Suchoski, P.G., Findakly, T.K. and Leonberger, F.J. (1988), "Stable low-loss proton-exchanged LiNbO₃ waveguide devices with no electrooptic degradation", *Optics Letters*. Vol. 13. pp. 1050–1052.
- Bortz, M.L. and Fejer, M.M. (1991), "Annealed proton-exchanged LiNbO₃ waveguides", *Optics Letters*. Vol. 16. pp. 1844–1846.
- Korkishko, Yu.N. and Fedorov, V.A. (1996), "Structural and optical characterization of annealed proton exchanged LiNbO₃ optical waveguides", *Optical Materials*. Vol. 5. pp. 175–185.
- Baldi, P., De Micheli, M.P., El Hadi, K., Nouh, S., Cino, A.C., Aschieri, P. and Ostrowsky, D.B. (1998), "Proton exchanged waveguides in LiNbO₃ and LiTaO₃ for integrated lasers and nonlinear frequency converters", *Optical Engineering*. Vol. 37. pp. 1193–1202.
- Korkishko, Yu.N., Fedorov, V.A. and Feoktistova O.Y. (2000), "LiNbO3 optical waveguide fabrication by high-temperature proton

exchange", J. Lightwave Technol. Vol. 18. pp. 562–568.

- Ponomarev, R.S. "A structural model for drift phenomena in integrated optical circuits based on H_xLi_{1-x}NbO₃ channel waveguides". Diss. ... cand. phys.-math. sci. Perm, 2014. 148 p. (in Russ.).
- Korkishko, Yu.N., Fedorov, V.A., Morozova, T.M., Caccavale, F., Gonella, F. and Segato, F. (1998), "Reverse proton exchange for buried waveguides in LiNbO₃", *J. Opt. Soc. America. A.* Vol. 15, no.
- Kolosovskii, E.A., Petrov, D.V. and Tsarev, A.V. (1981), "Numerical method for the reconstruction of the refractive index profile of diffused waveguides", *Sov. J. Quantum Electron.* Vol. 11, no. 12. pp. 1560–1566.
- Korkishko, Yu.N. and Fedorov, V.A. (1996), "Structural phase diagram of H_xLi_{1-x}NbO₃ waveguides: the correlation between optical and structural properties", *IEEE J. Select. Top. Quant. Electron.* Vol. 2, no. 2. pp. 187–196.
- Korkishko, Yu.N. and Fedorov, V.A. (1999), "Dependences of the refractive indices on the proton concentration in H:LiNbO₃ waveguides", *Technical Physics*. Vol. 44, no. 3. pp. 307–316.
- Mushinsky, S.S., Kichigin, V.I., Petukhov, I.V., Permyakova, M.A. and Shevtsov, D.I. (2017), "Structural phase transformations of proton-exchanged layers of lithium niobate during annealing", *Ferroelectrics*. Vol. 508. pp. 40–48.

Об авторах Петухов Игорь Валентинович, кандидат химических наук, доцент, кафедра фи- зической химии ФГБОУ ВО «Пермский государственный нацио- нальный исследовательский университет» 614990, Пермь, Букирева, 15 petukhov-309@yandex.ru	About the authors Petukhov Igor Valentinovich Candidate of Chemistry, Associate Professor of the De- partment of Physical Chemistry, Perm State University. 15, Bukireva st., Perm, Russia, 614990. petukhov-309@yandex.ru
Кичигин Владимир Иванович, кандидат химических наук, старший научный сотрудник кафедры физической химии ФГБОУ ВО «Пермский государственный нацио- нальный исследовательский университет» 614990, Пермь, Букирева, 15 kichigin@psu.ru	Kichigin Vladimir Ivanovich Candidate of Chemistry, Senior Researcher of the De- partment of Physical Chemistry, Perm State University. 15, Bukireva st., Perm, Russia, 614990. kichigin@psu.ru
Мушинский Сергей Сергеевич, начальник отдела Пермская научно-производственная приборо- строительная компания 614990, г. Пермь, ул. 25 Октября, 106 sergey.mushinsky@gmail.com	Mushinsky Sergey Sergeevich, Head of Department Perm Scientific Industrial Instrument-Making Company 106, 25th October st., Perm, Russia, 614990 sergey.mushinsky@gmail.com
Пермякова Мария Александровна, инженер-технолог ПАО Пермская научно-производственная прибо- ростроительная компания 614990, г. Пермь, ул. 25 Октября, 106 permyakovamarusya@gmail.com	Permyakova Mariya Alexandrovna Engineer Perm Scientific Industrial Instrument-Making Company 106, 25th October st., Perm, Russia, 614990 permyakovamarusya@gmail.com
Малинина Людмила Николаевна инженер, кафедра физики твердого тела ФГБОУ ВО «Пермский государственный нацио- нальный исследовательский университет» 614990, Пермь, Букирева, 15	Malinina Lyudmila Nikolaevna Engineer, Solid State Physics Department Perm State University. 15, Bukireva st., Perm, Russia, 614990.
Волынцев Анатолий Борисович, доктор физико-математических наук, заведую- щий кафедрой физики твердого тела, профессор ФГБОУ ВО «Пермский государственный нацио- нальный исследовательский университет» 614990, Пермь, Букирева, 15 voland@psu.ru	Volyntsev Anatoliy Borisovich, Doctor of Physical and Mathematical Sciences Head of Solid State Physics Department, Perm State University. 15, Bukireva st., Perm, Russia, 614990. voland@psu.ru
Информация для цитирования	

Петухов И.В., Кичигин В.И., Мушинский С.С., Пермякова М.А., Малинина Л.Н., Волынцев А.Б. Влияние обратного протонного обмена на структуру и свойства протонообменных слоев на Х-срезе кристалла ниобата лития // Вестник Пермского университета. Серия «Химия». 2018. Т. 8, вып. 3. С. 369–378. DOI: 10.17072/2223-1838-2018-3-369-378.

Petukhov I.V. Kichigin V.I. Mushinskii S.S. Permiakova M.A. Malinina L.N. Volyntsev A.B. Vliianie obratnogo protonnogo obmena na strukturu i svoistva protonoobmennykh sloev na X-sreze kristalla niobata litiia [Influence of reverse proton exchange on the structure and proper-ties of proton-exchange layers in X cut of lithium niobate crystal] // Vestnik Permskogo universiteta. Seriya «Khimiya» –Bulletin of Perm University. Chemistry. 2018. Vol. 8. Issue 3. P. 369–378 (in Russ.). DOI: 10.17072/2223-1838-2018-3-369-378