Мелатонин как перспективный фактор коррекции кишечного микробиома при воспалительных заболеваниях кишечника

##plugins.themes.bootstrap3.article.main##

Михаил Владимирович Осиков
Максим Валерьевич Гречишкин
Юлия Сергеевна Шишкова
Марина Анатольевна Ильиных

Аннотация

Воспалительные заболевания кишечника (ВЗК) включают язвенный колит и болезнь Крона. Этиология и патогенез ВЗК остаются до конца не ясными, наиболее распространенная гипотеза заключается в том, что аномальный иммунный ответ против микробиома кишечника запускается факторами окружающей среды у генетически предрасположенных людей. Недостатком препаратов первой линии терапии при ВЗК является возникновение побочных эффектов более чем у 30% пациентов. В связи с этим актуальна разработка новых безопасных лекарственных средств, действующих преимущественно локально. Цель работы – проанализировать современные данные о механизмах и эффектах воздействия на микробиом кишечника мелатонина в контексте возможного применения при ВЗК. Мелатонин (МТ) – биологически активное вещество, синтезируется в организме из триптофана, реализует свои эффекты через МТ-зависимые и МТ-независимые рецепторы, которые находятся в клеточной мембране и ядре. МТ участвует в регуляции циркадных ритмов, обладает антиоксидантным и иммуномодулирующим действием. При экспериментальном моделировании ВЗК и в клинических условиях МТ уменьшает выраженность воспалительного процесса в стенке толстой кишки за счет прерывания процессов перекисного окисления липидов и инактивации свободных радикалов, а также за счет действия через специфические рецепторы на функцию клеток крови лимфоидных органов. МТ при ВЗК приводит к качественному и количественному изменению кишечного микробиома, устранению признаков дисбиоза, увеличению количества продуцентов короткоцепочечных жирных кислот – Actinomycetota (Actinobacteria) и уменьшению количества бактерий, которые повышают проницаемость кишечного барьера – Bacteroidota (Bacteroidetes). Предположительно МТ оказывает бактериостатический эффект, связывая свободное железо и действуя на сигнальные пути NF-kB и STAT1, что может быть фактором коррекции дисбиоза толстой кишки при ВЗК. Данные о влиянии МТ на состав кишечного микробиома являются предпосылкой для проведения дальнейших доклинических исследований и возможного применения мелатонина при ВЗК в клинической практике.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Осиков, М. В. ., Гречишкин, М. В., Шишкова, Ю. С. ., & Ильиных, М. А. . (2023). Мелатонин как перспективный фактор коррекции кишечного микробиома при воспалительных заболеваниях кишечника. Вестник Пермского университета. Серия Биология, (3), 287–296. https://doi.org/10.17072/1994-9952-2023-3-287-296
Раздел
Иммунология
Биографии авторов

Михаил Владимирович Осиков, Южно-Уральский государственный медицинский университет Минздрава РФ, Челябинск, Россия

Доктор медицинских наук, профессор, зав. кафедрой патофизиологии

Максим Валерьевич Гречишкин, Южно-Уральский государственный медицинский университет Минздрава РФ, Челябинск, Россия

Лаборант кафедры патофизиологии, специалист отдела инновационной работы управления по научной и инновационной работе

Юлия Сергеевна Шишкова, Южно-Уральский государственный медицинский университет Минздрава РФ, Челябинск, Россия

Доктор медицинских наук, профессор, профессор кафедры микробиологии, вирусологии и иммунологии;

Марина Анатольевна Ильиных, Южно-Уральский государственный медицинский университет Минздрава РФ, Челябинск, Россия

Кандидат биологических наук, доцент кафедры патофизиологии

Библиографические ссылки

Бурчаков Д.И., Успенская Ю.Б. Антиоксидантный, противовоспалительный и седативный эффекты мелатонина: результаты клинических исследований // Журнал неврологии и психиатрии им. С.С. Корса-кова. Спецвыпуски. 2017. № 4(2). С. 67–73. https://doi.org/10.17116/jnevro20171174267-73.

Осиков М.В., Кайгородцева Н. Сравнительный анализ противовоспалительного действия озона и 5-аминосалициловой кислоты при экспериментальном колите // Патологическая физиология и экспери-ментальная терапия. 2022. Т. 66, № 3. С. 91–100.

Осиков М.В., Симонян Е.В., Бакеева А.Е. Влияние экстракта корневищ куркумы длинной в составе ректальных суппозиториев на показатели перекисного окисления липидов в толстом кишечнике при экс-периментальной болезни Крона // Экспериментальная и клиническая гастроэнтерология. 2020. Т. 175(3). С. 80–86. DOI: 10.31146/1682-8658-ecg-175-3-80-86.

Осиков М.В. и др. Морфологические аспекты протекторного действия оригинальных ректальных суппозиториев с экстрактом куркумы при экспериментальной болезни Крона // Патологическая физио-логия и экспериментальная терапия. 2021. Т. 65, № 2. С. 67–77.

Осиков М.В. и др. Влияние витамина D3 в составе оригинальных ректальных суппозиториев на по-казатели окислительной модификации белков в толстом кишечнике при экспериментальном язвенном колите // Бюллетень экспериментальной биологии и медицины. 2020. Т. 170, №. 11. С. 563–568.

Barnes A. et al. Systematic review and meta-analysis of sleep quality in inactive inflammatory bowel dis-ease // JGH Open. 2022. Vol. 6, № 11. P. 738–744. doi: 10.1002/jgh3.12817.

da Silva J.L. et al. The Microbiota-Dependent Worsening Effects of Melatonin on Gut Inflammation // Microorganisms. 2023. Vol. 11, № 2. P. 460. doi: 10.3390/microorganisms11020460.

Esteban-Zubero E. et al. Melatonin's role as a co-adjuvant treatment in colonic diseases: A review // Life Sci. 2017. Vol. 170. P. 72–81. doi: 10.1016/j.lfs.2016.11.031.

Flemer B. et al. Tumour-associated and non-tumour-associated microbiota: Addendum // Gut Microbes. 2018. Jul 4; 9(4). Р. 369–373. doi: 10.1080/19490976.2018.1435246.

Gao Y. et al. Melatonin Receptors: A Key Mediator in Animal Reproduction // Vet. Sci. 2022. Vol. 9, № 7. P. 10. doi: 10.3390/vetsci9070309.

Guan Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease // Journal of Immunology Research. 2019. Vol. 2019. Article number. 7247238. P. 16. doi: 10.1155/2019/7247238.

Gulcin I., Buyukokuroglu M.E., Kufrevioglu O.I. Metal chelating and hydrogen peroxide scavenging ef-fects of melatonin // J. Pineal. Res. 2003. May; 34(4). Р. 278–281. doi: 10.1034/j.1600-079x.2003.00042.x.

He F. et al. Bacteriostatic Potential of Melatonin: Therapeutic Standing and Mechanistic Insights // Front Immunol. 2021. May. 31, 12. Р. 683879. doi: 10.3389/fimmu.2021.683879.

Jeon H. et al. TDAG51 deficiency attenuates dextran sulfate sodium-induced colitis in mice // Sci Rep. 2022. Vol. 12, № 1. P. 13. doi: 10.1038/s41598-022-24873-4.

Jochum S.B. et al. Colonic Epithelial Circadian Disruption Worsens Dextran Sulfate Sodium-Induced Co-litis // Inflamm. Bowel. Dis. 2023. Vol. 29, № 3. P. 444–457. doi: 10.1093/ibd/izac219.

Kauppila A. et al. Inverse seasonal relationship between melatonin and ovarian activity in humans in a region with a strong seasonal contrast in luminosity // J. Clin. Endocrinol. Metab. 1987. Vol. 65, № 5. P. 823–828. doi: 10.1210/jcem-65-5-823.

Kim S. et al. Sirtuin 7 Inhibitor Attenuates Colonic Mucosal Immune Activation in Mice-Potential Ther-apeutic Target in Inflammatory Bowel Disease // Biomedicines. 2022. Vol. 10, № 11. P. 10. doi: 10.3390/biomedicines10112693.

Kim S.W. et al. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling // Sci. Rep. 2020. Vol. 10, № 1. P. 9. doi: 10.1038/s41598-020-59314-7.

Lardone P.J. et al. Blocking of melatonin synthesis and MT(1) receptor impairs the activation of Jurkat T cells // Cell Mol. Life Sci. 2010. Vol. 67, № 18. P. 3163–3172. doi: 10.1007/s00018-010-0374-y.

Lee J.W.J. et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease // Cell Host Microbe. 2021. Vol. 29, № 8. P. 1294–1304. doi: 10.1016/j.chom.2021.06.019.

Limson J., Nyokong T., Daya S. The interaction of melatonin and its precursors with aluminium, cadmi-um, copper, iron, lead, and zinc: an adsorptive voltammetric study // J. Pineal. Res. 1998. Jan; 24(1). Р. 15–21. doi: 10.1111/j.1600-079x.1998.tb00361.x.

Liu G. et al. Melatonin alters amino acid metabolism and inflammatory responses in colitis mice // Ami-no Acids. 2017. Vol. 49, № 12. P. 2065–2071. doi: 10.1007/s00726-017-2489-z.

Liu J. et al. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective // Annu Rev. Pharmacol. Toxicol. 2016. Vol. 56. P. 361–383. doi: 10.1146/annurev-pharmtox-010814-124742.

Liu X.W., Wang C.D. Melatonin alleviates circadian rhythm disruption exacerbating DSS-induced colitis by inhibiting the distribution of HMGB1 in intestinal tissues // Int. Immunopharmacol. 2019. Vol. 73. P. 108–117. doi: 10.1016/j.intimp.2019.05.005.

Ma N. et al. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation // Med. Res. Rev. 2020. Vol. 40, № 2. P. 606–632. doi: 10.1002/med.21628.

Marié I.J. et al. Tonic interferon restricts pathogenic IL-17-driven inflammatory disease via balancing the microbiome // eLife. 2021. Vol. 10. Article number e68371. P. 20. doi: 10.7554/eLife.68371.

Nikolaev G., Robeva R., Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease // Int. J. Mol. Sci. 2021. Vol. 23, № 1. P. 23. doi: 10.3390/ijms23010471.

Qin T. et al. Melatonin Suppresses LPS-Induced Oxidative Stress in Dendritic Cells for Inflammatory Regulation via the Nrf2/HO-1 Axis // Antioxidants (Basel). 2022. Vol. 11, № 10. P. 12. doi: 10.3390/antiox11102012.

Ortiz A.M. et al. Experimental bacterial dysbiosis with consequent immune alterations increase in-trarectal SIV acquisition susceptibility // Cell Rep. 2023. Vol. 42, № 1. P. 15. doi: 10.1016/j.celrep.2023.112020.

Pan S. et al. Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota // Biochim. Biophys. Acta Mol. Basis. Dis. 2022. Jan 1. 1868(1). Р. 166281. doi: 10.1016/j.bbadis.2021.166281.

Paulose J.K. et al. Human Gut Bacteria Are Sensitive to Melatonin and Express Endogenous Circadian Rhythmicity // PLoS One. 2016. Vol. 11, № 1. P. 9. doi: 10.1371/journal.pone.0146643.

Raphael I. et al. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases // Cytokine. 2015. Vol. 74, № 1. P. 5–17. doi: 10.1016/j.cyto.2014.09.011.

Reiter R.J. et al. Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas // Cell Mol Life Sci. 2017. Vol. 74, № 21. P. 3863–3881. doi: 10.1007/s00018-017-2609-7.

Sibilano R., Frossi B., Pucillo C.E. Mast cell activation: a complex interplay of positive and negative sig-naling pathways. Eur J Immunol. 2014. Vol. 44, № 9. P. 2558–2566. doi: 10.1002/eji.201444546.

Tordjman S. et al. Melatonin: Pharmacology, Functions and Therapeutic Benefits // Curr. Neurophar-macol. 2017. Vol. 15, № 3. P. 434–443. doi: 10.2174/1570159X14666161228122115.

Vaccaro R. et al. Serotonin and Melatonin in Human Lower Gastrointestinal Tract // Diagnostics (Basel). 2023. Vol. 13, № 2. P. 9. doi: 10.3390/diagnostics13020204.

Vakadaris G. et al. The Role of Probiotics in Inducing and Maintaining Remission in Crohn's Disease and Ulcerative Colitis: A // Systematic Review of the Literature. Biomedicines. 2023. Vol. 11, № 2. P. 494. doi: 10.3390/biomedicines11020494.

Wu Y. et al. Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyr-ate/GPR109A signaling pathway // J. Nanobiotechnology. 2021. Jun. 6. 19(1). Р. 170. doi: 10.1186/s12951-021-00915-3.

Zhang B. et al. Gut Microbiota Dysbiosis Induced by Decreasing Endogenous Melatonin Mediates the Pathogenesis of Alzheimer's Disease and Obesity // Front Immunol. 2022. May 10. 13. 900132. doi: 10.3389/fimmu.2022.900132.

Zhao Z.X. et al. Melatonin Mitigates Oxazolone-Induced Colitis in Microbiota-Dependent Manner // Front Immunol. 2022. Vol. 12. Article number 783806. P. 11. doi: 10.3389/fimmu.2021.783806.