Метаболическая регуляция функций натуральных киллеров

##plugins.themes.bootstrap3.article.main##

Екатерина Григорьевна Орлова

Аннотация

Согласно современным представлениям, трансформация фенотипа и функций натуральных киллеров (NK-клеток) ассоциирована с метаболическим репрограммированием, а именно преимущественным использованием клеткой специфических метаболических путей для получения энергии. Ключевыми молекулами, участвующими в контроле метаболических программ NK-клеток, являются мишень для рапамицина в клетках млекопитающих (mTOR) и аденозинмонофосфат-активируемая протеинкиназа (AMPK). Модуляция активности mTOR и AMPK различными агентами определяет метаболическое репрограммирование, изменение фенотипа NK-клеток и функциональной активности. Особенности метаболической регуляции эффекторных функций NK-клеток зависят от их локализации, степени зрелости, продолжительности и специфичности активационных сигналов. Особое внимание уделяется изменению фенотипа, функциональной и метаболической активности NK-клеток при беременности, что ассоциировано с формированием периферической иммунной толерантности. Изучение метаболической регуляции функциональной активности NK-клеток необходимо для повышения эффективности NK-клеточной терапии.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Орлова, Е. Г. . (2023). Метаболическая регуляция функций натуральных киллеров. Вестник Пермского университета. Серия Биология, (1), 83–94. https://doi.org/10.17072/1994-9952-2023-1-83-94
Раздел
Иммунология
Биография автора

Екатерина Григорьевна Орлова, Институт экологии и генетики микроорганизмов УрО РАН – филиал ПФИЦ УрО РАН, Пермь, Россия

Д-р биол. наук, в.н.с. лаборатории иммунорегуляции; старший преподаватель кафедры микробиологии и иммунологии

Библиографические ссылки

Орлова Е.Г. и др. Особенности экспрессии молекул Tim-3, CD9, CD49a лимфоцитами периферической крови при физиологической беременности // Вестник уральской медицинской академической науки. 2022. Т. 19, № 5. C. 461–473,

Allan D.S. et al. TGF-β affects development and differentiation of human natural killer cell subsets // Eur. J. Immunol. 2010. Vol. 40(8). P. 2289–2295.

Assmann N. et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses // Nat. Immunol. 2017. Vol. 18. P. 1197–1206.

Béziat V. et al. NK cell terminal differentiation: correlated stepwise decrease of NKG2A and acquisition of KIRs // PLoS One. 2010. Vol. 5(8). e11966.

Björkström N.K., Ljunggren H.G., Michaëlsson J. Emerging insights into natural killer cells in human pe-ripheral tissues // Nat. Rev. Immunol. 2016. Vol. 16(5). P. 310–320.

Carlino C. et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism con-trolling NK cell accumulation in the uterus during early pregnancy // Blood. 2008. Vol. 111(6). P. 3108–3115.

Cerdeira A.S. et al. Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors // J. of immunol. 2013. Vol. 190(8). P. 3939–3948.

Chapman N.M., Shrestha S., Chi H. Metabolism in Immune Cell Differentiation and Function // Adv. Exp. Med. Biol. 2017. Vol. 1011. P. 1–85.

Chiossone L. et al. Maturation of mouse NK cells is a 4-stage developmental program // Blood. 2009. Vol. 113(22). P. 5488–5496.

Chiossone L. et al. In vivo generation of decidual natural killer cells from resident hematopoietic progeni-tors // Haematologica. 2014. Vol. 99(3). P. 448–457.

Crespo Â.C., et al. Decidual NK Cells Transfer Granulysin to Selectively Kill Bacteria in Trophoblasts // Cell. 2020. Vol. 182(5). P. 1125–1139.

Donnelly R.P. et al. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function // J. Immunol. 2014. Vol. 193. P. 4477–4484.

Erlebacher A. Immunology of the maternal-fetal interface // Annu. Rev. Immunol. 2013. Vol. 31. P. 387–411.

Fu B. et al. Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors // Immunity. 2017. Vol. 47(6), P. 1100–1113.

Husain Z., Seth P., Sukhatme V.P. Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology // Oncoimmunology. 2013. Vol. 2(11). e26383.

Jiang L. et al. Extracellular Vesicle-Mediated Secretion of HLA-E by Trophoblasts Maintains Pregnancy by Regulating the Metabolism of Decidual NK Cells // International journal of biological sciences. 2021. Vol. 17(15). P. 4377–4395.

Jin X. et al. Decidualization-derived cAMP regulates phenotypic and functional conversion of decidual NK cells from CD56dimCD16- NK cells // Cell Mol. Immunol. 2021. Vol. 18(6). P. 1596–1598.

Keating S.E. et al. Metabolic reprogramming supports IFN-γ production by CD56bright NK cells // J. Im-munol. 2016. Vol. 196(6). P. 2552–2560.

Keskin D.B. et al. TGF beta promotes conversion of CD16+ peripheral blood NK cells into CD16- NK cells with similarities to decidual NK cells // Proc. Natl. Acad. Sci. USA. 2007. Vol. 104(9). P. 3378–3383.

Kim K.Y. et al. Adiponectin is a negative regulator of NK cell cytotoxicity // J. Immunol. 2006. Vol. 176(10). P. 5958–5664.

Koopman L.A. et al. Human decidual natural killer cells are a unique NK cell subset with immunomodu-latory potential // The J. of exp. medicine. 2003. Vol. 198(8). P. 1201–1212.

Lee C.L. et al. Glycodelin-A stimulates the conversion of human peripheral blood CD16-CD56bright NK cell to a decidual NK cell-like phenotype // Hum. Reprod. 2019. Vol. 34(4). P. 689–701.

Marcais A. et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the de-velopment and activation of NK cells // Nat. Immunol. 2014. Vol. 15. P. 749–757.

Martrus G. et al. Proliferative capacity exhibited by human liver-resident CD49a+CD25+NK cells // PloS One. 2017. Vol. 12(8), e0182532.

Melsen J.E. et al. Human Circulating and Tissue-Resident CD56(bright) Natural Killer Cell Populations // Front. Immunol. 2016. Vol. 7. P. 262.

Montaldo E. et al. Group 3 innate lymphoid cells (ILC3s): Origin, differentiation, and plasticity in hu-mans and mice // Eur. J. Immunol. 2015. Vol. 45(8). P. 2171–2182.

Moretta A. et al. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis // Immu-nol. Today. 2000. Vol. 21(5). P. 228–234.

Muller-Durovic B. et al. Killer cell lectin-like receptor G1 inhibits NK cell function through activation of adenosine 5′-monophosphateactivated protein kinase // J. Immunol. 2016. Vol. 197(7). P. 2891–2899.

Nandagopal N. et al. The Critical Role of IL-15-PI3K-mTOR Pathway in Natural Killer Cell Effector Functions // Front Immunol. 2014. Vol. 5. P. 187.

O'Brien K.L., Finlay D.K. Immunometabolism and natural killer cell responses // Nat. Rev. Immunol. 2019. Vol. 19(5). P. 282–290.

Poli A. et al. CD56bright natural killer (NK) cells: an important NK cell subset // Immunology. 2009. Vol. 126(4). P. 458–465.

Saito S. et al. The balance between cytotoxic NK cells and regulatory NK cells in human pregnancy // J. of Reprod. Immunol. 2008. Vol. 77(1), P. 14–22.

Salzberger W. et al. Tissue-resident NK cells differ in their expression profile of the nutrient transporters Glut1, CD98 and CD71 // PLoS One. 2018. Vol. 13. e0201170.

Sánchez-Rodríguez E.N. et al. Persistence of decidual NK cells and KIR genotypes in healthy pregnant and preeclamptic women: a case-control study in the third trimester of gestation // Reprod. Boil. and endocrinol. 2011. Vol. 9. P. 8.

Shojaei Z. et al. Functional prominence of natural killer cells and natural killer T cells in pregnancy and infertility: A comprehensive review and update // Pathol. Res. Pract. 2022. Vol. 238. P. 154062.

Slattery K. et al. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer // J. Im-munother. Cancer. 2021. Vol. 9(2). e002044.

Song Yan et al. The mTORC1 Signaling Support Cellular Metabolism to Dictate Decidual NK Cells Func-tion in Early Pregnancy // Front Immunol. 2022. Vol. 13. P. 771732.

Sotnikova N. et al. Interaction of decidual CD56+ NK with trophoblast cells during normal pregnancy and recurrent spontaneous abortion at early term of gestation // Scandinavian journal of immunology. 2014. Vol. 80(3), P. 198–208.

Sun et al. Tim-3 is up regulated in NK cells during early pregnancy and inhibits NK cytotoxicity toward trophoblast in galectin-9 dependent pathway // PloS One. 2016. Vol. 11(1). e0147186.

Tessmer M.S. et al. KLRG1 binds cadherins and preferentially associates with SHIP-1 // Int. Immunol. 2007. Vol. 19(4). P. 391–400.

Vacca P. et al. Origin, phenotype and function of human natural killer cells in pregnancy // Trends Im-munol. 2011. Vol. 32. P. 517–523.

van den Heuvel M.J. et al. Trafficking of circulating pro-NK cells to the decidualizing uterus: regulatory mechanisms in the mouse and human // Immunol. Invest. 2005. Vol. 34(3). P. 273–293.

Viel S. et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway // Sci. Signal. 2016. Vol. 9(415). ra19.

Wang Z. et al. (). IL-10 Enhances Human Natural Killer Cell Effector Functions via Metabolic Repro-gramming Regulated by mTORC1 Signaling // Frontiers in immunology. 2021. Vol. 12. P. 619195.

Yan S. et al. The mTORC1 Signaling Support Cellular Metabolism to Dictate Decidual NK Cells Function in Early Pregnancy // Frontiers in immunology.2022. Vol. 13. P. 771732.

Yan W.H. et al. Possible roles of KIR2DL4 expression on uNK cells in human pregnancy // Am. J. Re-prod. Immunol. 2007. Vol. 57(4). P. 233–242.

Zaiatz-Bittencourt V., Finlay D.K., Gardiner C.M. Canonical TGF-b signaling pathway represses human NK cell metabolism // J. Immunol. 2018. Vol. 200. P. 3934–3941.

Наиболее читаемые статьи этого автора (авторов)