ВОССТАНОВЛЕНИЕ РАСТЕНИЙ ТАБАКА ПОСЛЕ ОБРАБОТКИ ИОНАМИ МЕДИ

##plugins.themes.bootstrap3.article.main##

Анастасия Сергеевна Тугбаева
Александр Анатольевич Ермошин
Дмитрий Сергеевич Плотников
Ирина Сергеевна Киселева

Аннотация

Последействие ионов меди (100 и 300 мкМ) на размеры органов, содержание маркеров стресса (перекись водорода, перекисное окисление липидов – ПОЛ) и компонентов антиоксидантного статуса (супероксиддисмутаза – СОД и гваяколовая пероксидаза – ГПО) были изучены в корнях, стебле и листьях Nicotiana tabacum L. Показано, что растения табака чувствительны к длительному воздействию 100 и 300 мкМ Cu2+. Обе концентрации ингибировали рост корней, тогда как длина, толщина побегов и площадь листьев уменьшались только в случае предварительной обработки 300 мкМ Cu2+; то есть рост надземных органов был подавлен значительно меньше, чем корней. Уровень ПОЛ и содержание перекиси водорода в корнях в этих условиях также были выше, что указывает на более сильную нагрузку на корни, чем на стебли и листья. Активность антиоксидантных ферментов СОД и ГПО в корнях и надземных органах специфически изменялась в зависимости от концентрации ионов меди и типа органа. В корнях наблюдалось снижение активности СОД и повышение активности ГПО при предварительной обработке 300 мкМ Cu2+ по сравнению с контролем и 100 мкМ Cu2+, тогда как в стебле и листьях активность ферментов снижалась. Полученные данные свидетельствуют о неполном восстановлении растений в условиях последействия ионов меди.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Тугбаева, А. С., Ермошин, А. А., Плотников, Д. С., & Киселева, И. С. (2020). ВОССТАНОВЛЕНИЕ РАСТЕНИЙ ТАБАКА ПОСЛЕ ОБРАБОТКИ ИОНАМИ МЕДИ. Вестник Пермского университета. Серия Биология, (4), 344–351. извлечено от http://press.psu.ru/index.php/bio/article/view/3979
Раздел
Экология
Биографии авторов

Анастасия Сергеевна Тугбаева, ФГОУВО «Уральский федеральный университет им. первого Президента России Б.Н. Ельцина»

Аспирант кафедры экспериментальной биологии и биотехнологий Института естественных наук и математики

Александр Анатольевич Ермошин, ФГОУВО «Уральский федеральный университет им. первого Президента России Б.Н. Ельцина»

Кандидат биологических наук, доцент кафедры экспериментальной биологии и биотехнологий Института естественных наук и математики

Дмитрий Сергеевич Плотников, ФГОУВО «Уральский федеральный университет им. первого Президента России Б.Н. Ельцина»

Магистрант департамента биологии и фундаментальной медицины Института естественных наук и математики

Ирина Сергеевна Киселева, ФГОУВО «Уральский федеральный университет им. первого Президента России Б.Н. Ельцина»

Кандидат биологических наук, зав. кафедрой экспериментальной биологии и биотехнологий Института естественных наук и математики 

Библиографические ссылки

Ермошин А.А., Цибизова М.Н., Киселёва И.С. Влияние ионов меди и алюминия на развитие проростков Trifolium repens L. // Вестник Томского государственного университета. Сер. Биология. 2013. Т. 3, № 23. С. 120–126.

Abdelgawad H. et al. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity // Environmental Pollution. 2020. Vol. 258. P. 113705.

Beauchamp C., Fridovich L. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels // Analytical Biochemistry. 1971. Vol. 44, № 1. P. 276–287.

Bellincampi D. et al. Extracellular H2O2 induced by oligogalacturonics is not involved in the inhibition of the auxinregulated rolB gene expression in to-bacco leaf explants // Plant Physiology. 2000. Vol. 122. P. 1379–1385.

Bouazizi H. et al. Cell wall accumulation of Cu ions and modulation of lignifying enzymes in primary leaves of bean seedlings exposed to excess copper // Biological Trace Element Research. 2011. Vol. 139. P. 97–107.

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Analytical Biochemistry. 1976. Vol. 72. P. 248–254.

Chance B., Maehly A.C. Assay catalase and peroxidase // Methods in Enzymology. 1955. Vol. 2. P. 764–775.

Chen J. et al. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens) // Scientific Reports. 2015. Vol. 5, № 13554.

Cook C.M. et al. Effects of copper on the growth, pho-tosynthesis and nutrient concentration of Phaseolus plants // Photosynthetica. 1997. Vol. 34. P. 179–193.

Cuypers A. et al. Hydrogen peroxide, signaling in disguise during metal phytotoxicity // Frontiers in Plant Science. 2016. Vol. 7. P. 470.

Drost W. et al. Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibi-tion and the recovery after exposure // Chemos-phere. 2007. Vol. 67, № 1. P. 36–43.

Elleuch A. et al. Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress // Ecotoxicology and Environmental Safety. 2013. Vol. 98. P. 46–53.

Hamim H., Miftahudin M., Setyaningsih L. Cellular and ultrastructure alteration of plant roots in response to metal stress. In Plant growth and regula-tion-alterations to sustain unfavorable conditions. London: IntechOpen, 2018. pp 21–41.

Holubek R. et al. The recovery of soybean pants under short-term cadmium stress // Plants. 2020. Vol. 9. P. 782.

Khatun S. et al. Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants // Environmental and Expe-rimental Botany. 2008. Vol. 64. P. 279–285.

Ku H.-M. et al. The effect of water deficit and excess copper on proline metabolism in Nicotiana ben-thamiana // Biologia Plantarum. 2012. Vol. 56, № 2. P. 337–343.

Maksimovic J.D. et al. Peroxidase activity and phenolic compounds content in maize root and leaf apoplast and their association with growth // Plant Science. 2008. Vol. 175, № 5. P. 656–662.

Mohammed A.S., Kapri A., Goel R. Heavy metal pollution: source, impact, and remedies // Biomanage-ment of Metal-Contaminated Soils. 2011. P. 1–28.

Mostofa M.G., Fujita M. Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems // Ecotoxicology. 2013. Vol. 22. P. 959–973.

Moustakas N.K., Ntzanis H. Estimating fluecured tobacco leaf area from linear measurements, under mediterranean conditions // Agr. Med. 1998. Vol. 128. P. 226–231.

Printz B. et al. Copper trafficking in plants and its implication in cell wall dynamics // Front. Plant Sci. 2016. Vol. 7. P. 601.

Thounaojam T.C. et al. Zinc ameliorates copper-induced oxidative stress in developing rice (Oryza sativa L.) seedlings // Protoplasma. 2014. Vol. 251, № 1. P. 61–69.

Uchiyama M., Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test // Analytical Biochemistry. 1978. Vol. 86, № 1. P. 287–297

Vijayarengan P., Jose M.D. Changes in growth, pigments and phytoremediating capability of four plant species under copper stress // Journal of Environmental Biology. 2014. Vol. 21, № 5. P. 119–126.

Yruela I. Copper in plants // Brazilian Journal of Plant Physiology. 2005. Vol. 17. P. 145–156.

Zaia D.M. et al. Spectrophotometric determination of total proteins in blood plasma: a comparative study among dye-binding methods // Brazilian archives of biology and technology. 2005. Vol. 48, № 3. P. 385-388.