СКРИНИНГ ГЕНА АЛЬФА-СУБЪЕДИНИЦЫ БЕНЗОАТ ДИОКСИГЕНАЗЫ В БАКТЕРИАЛЬНЫХ АССОЦИАЦИЯХ, ПОЛУЧЕННЫХ В РЕЗУЛЬТАТЕ СЕЛЕКЦИИ НА (ХЛОР)АРОМАТИЧЕСКИХ СОЕДИНЕНИЯХ
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
Назарова Э.А., Кирьянова Т.Д., Егорова Д.О. Разнообразие гена бензоат диоксигеназы в бактериальных ассоциациях, сформировавшихся под давлением хлорорганического загрязнения // Экологическая генетика. 2019. Т. 17, № 3. С. 13–22. doi: 10.17816/ecogen17313-22
Abd El-Mawla A.M., Beerhues L. Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum // Planta. 2002. Vol. 214. P.727. https://doi.org/10.1007/s004250100657
Baggi G. et al. Co-metabolism of di- and trichlorobenzoates in a 2-chlorobenzoate-degrading bacterial culture: Effect of the position and number of halosubstituents // International Biodeterioration and Biodegradation. 2008. Vol. 62, № 1. P. 57–64.
doi:10.1016/j.ibiod.2007.12.002
Field J.A., Sierra-Alvarez R. Microbial transformation of chlorinated benzoates // Reviews in Environmental Science and BioTechnology. 2008a. Vol. 7. P. 191–210. doi 10.1007/s11157-008-9133-z
Field J.A., Sierra-Alvarez R. Microbial transformation and degradation of polychlorinated biphenyls // Environmental Pollution. 2008b. Vol. 155, № 1. P. 1–12.
Haddad S., Eby D.M., Neidle E.L. Cloning and ex-pression of the benzoate dioxygenase genes from Rhodococcus sp. strain 19070. // Applied Envi-ronmental Microbiology. 2001. Vol. 67. P. 2507–2514.
Kahlon R.S. Pseudomonas: Molekular and Applied Biology. Springer International Publishing Swit-zerland, 2016. 519 p. doi: 10.1007/978-3-319-31198-2_4
Kimura N. et al. Pseudomonas furukawaii sp. nov., a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil in Japan // International Journal Systematic Evolution Micro-biology. 2018. Vol. 68, № 5. P. 1429–1435.
Kitagawa W. et al. Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1 // Journal of Bacteriology. 2001. Vol. 183. P. 6598–6606.
Parales R.E., Resnick S.M. Aromatic Ring Hydroxylating Dioxygenases // Pseudomonas / J.L. Ramos, R.C. Levesque, eds. Boston: Springer, 2006. P. 287–340. doi:10.1007/2F0-387-28881-3_9
Pieper D.H. Aerobic degradation of polychlorinated biphenyls. // Applied Microbiology Biotechnology. 2005. Vol. 67, № 2. P. 170–191. https://doi.org/10.1007/s00253-004-1810-4
Solyanikova I.P. et al. Pecularities of the degradation of benzoate and its chloro- and hydraxy-substituted analogs by Actinobacteria. // International Biodeterioration and Biodegradation. 2015. Vol. 100. P. 155–164. doi: 10.1016/j.ibiod.2015.02.028
Suenaga H. et al. Insights into the genomic plasticity of Pseudomonas putida KF715, a strain with unique biphenyl-utilizing activity and genome instability properties // Environmenmental Microbi-ology Reports. 2017. Vol. 9, № 5. P. 589–598.