НОВЫЙ МЕТОД ФУНКЦИОНАЛИЗАЦИИ МАГНИТНЫХ НАНОЧАСТИЦ, ИНКАПСУЛИРОВАННЫХ УГЛЕРОДОМ

##plugins.themes.bootstrap3.article.main##

Павел/Pavel Викторович/Viktorovich Храмцов/Khramtsov
Мария/Maria Станиславовна/Stanislavovna Бочкова/Bochkova
Валерия/Valeria Павловна/Pavlovna Тимганова/Timganova
Мария/Maria Дмитриевна/Dmitrievna Кропанева/Kropaneva
Светлана/Svetlana Анатольевна/Anatolyevna Заморина/Zamorina
Михаил/Mikhail Борисович/Borisovich Раев/Rayev

Аннотация

Описан метод биологической функционализации магнитных железоуглеродных наночастиц. Суть метода заключается в ковалентной пришивке белков или других веществ, содержащих аминогруппы, к молекулам бычьего сывороточного альбумина, нековалентно сорбированного на углеродной поверхности наночастиц. В настоящей работе в качестве модельного белка был использован стрептавидин. Предлагаемый метод прост в реализации, все реакции проводятся в «мягких» физико-химических условиях. Синтезированные конъюгаты магнитных наноча-стиц с биомолекулами могут быть использованы в различных областях биомедицины.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Храмцов/Khramtsov П. В., Бочкова/Bochkova М. С., Тимганова/Timganova В. П., Кропанева/Kropaneva М. Д., Заморина/Zamorina С. А., & Раев/Rayev М. Б. (2018). НОВЫЙ МЕТОД ФУНКЦИОНАЛИЗАЦИИ МАГНИТНЫХ НАНОЧАСТИЦ, ИНКАПСУЛИРОВАННЫХ УГЛЕРОДОМ. Вестник Пермского университета. Серия Биология, (4), 450–456. извлечено от http://press.psu.ru/index.php/bio/article/view/1892
Раздел
Иммунология
Биографии авторов

Павел/Pavel Викторович/Viktorovich Храмцов/Khramtsov, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН; ФГБОУВО «Пермский государственный национальный исследовательский университет»

Кандидат биологических наук, инженер лаборатории экологической иммунологии;Ассистент кафедры микробиологии и иммунологии

Мария/Maria Станиславовна/Stanislavovna Бочкова/Bochkova, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН

Кандидат биологических наук, научный сотрудник лаборатории экологической иммунологии

Валерия/Valeria Павловна/Pavlovna Тимганова/Timganova, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН

Кандидат биологических наук, младший научный сотрудник лаборатории экологической иммунологии

Мария/Maria Дмитриевна/Dmitrievna Кропанева/Kropaneva, ФГБОУВО «Пермский государственный национальный исследовательский университет»

Студент биологического факультета

Светлана/Svetlana Анатольевна/Anatolyevna Заморина/Zamorina, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН; ФГБОУВО «Пермский государственный национальный исследовательский университет»

Доктор биологических наук, ведущий научный сотрудник лаборатории экологической иммунологии;Доцент кафедры микробиологии и иммунологии

Михаил/Mikhail Борисович/Borisovich Раев/Rayev, ФГБУН Институт экологии и генетики микроорганизмов УрО РАН; ФГБОУВО «Пермский государственный национальный исследовательский университет»

Доктор биологических наук, ведущий научный сотрудник лаборатории экологической иммунологии;Профессор кафедры микробиологии и иммунологии

Библиографические ссылки

Assa F. et al. Chitosan magnetic nanoparticles for drug delivery systems // Critical Reviews in Biotechnology. 2017. Vol. 7 (4). P. 492-509.

Fuhrer R. et al. Immobilized P-cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: Reversible organic contaminant adsorption and enrichment from water // Langmuir. 2011. Vol. 27 (5). P. 1924-1929.

Galakhov V.R. et al. Characterization of carbon-encapsulated nickel and iron nanoparticles by means of X-ray absorption and photoelectron spectroscopy // Journal of Physical Chemistry C. 2010. Vol. 114 (51). P. 22413-22416.

Goding J. W. Antibody production by hybridomas // Journal of Immunological Methods. 1980. Vol. 39 (4). P. 285-308.

Herrmann I.K. et al. High-strength metal nanomag-nets for diagnostics and medicine: Carbon shells allow long-term stability and reliable linker chemistry // Nanomedicine. 2009. Vol. 4 (7). P. 787798.

Herrmann I.K. et al. In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short- and long-term exposure scenarios // Nanomedicine. 2016. Vol. 11 (7). P. 783-796.

Kang T. et al. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy // Biomaterials. 2017. Vol. 136. P. 98114.

Karmakar A. et al. Radio-frequency induced in vitro thermal ablation of cancer cells by EGF functionalized carbon-coated magnetic nanoparticles // Journal of Materials Chemistry. 2011. Vol. 21 (34). P. 12761-12769.

Kasprzak A. et al. Grinding-induced functionalization of carbon-encapsulated iron nanoparticles // Green Chemistry. 2017. Vol. 19 (15). P. 3510-3514.

Kowalczyk A. et al. Conformational control of human transferrin covalently anchored to carbon-coated iron nanoparticles in presence of a magnetic field // Acta Biomaterialia. 2016. Vol. 45 P. 367-374.

Lee H.-J. et al. Photothermal cancer therapy using graphitic carbon-coated magnetic particles prepared by one-pot synthesis // International Journal of Nanomedicine. 2015. Vol. 10. P. 271-282.

Li X. et al. One-pot synthesis and functionalisation of Fe2O3@C-NH2 nanoparticles for imaging and therapy // IET Nanobiotechnology. 2014. Vol. 8 (2). P. 93-101.

Li Y. et al. Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization // Carbon. 2016. Vol. 100. P. 165-177.

Mattila P. et al. Scalable synthesis and functionalization of cobalt nanoparticles for versatile magnetic separation and metal adsorption // Journal of Nanoparticle Research. 2014. Vol. 16 (9). art. no. 2606.

Matysiak-Brynda E. et al. Novel ultrasensitive immunosensor based on magnetic particles for direct detection of transferrin in blood // Sensors and Actuators, B: Chemical. 2017. Vol. 249. P. 105113.

Sadhasivam S. et al. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells // International Journal of Pharmaceutics. 2015. Vol. 480 (1-2). P. 814.

Schreiber H.A. et al. Using carbon magnetic nanoparticles to target, track, and manipulate dendritic cells // Journal of Immunological Methods. 2010. Vol. 356 (1-2). P. 47-59.

Shah M.A.A. et al. Nanoparticles for DNA vaccine delivery // Journal of Biomedical Nanotechnology. 2014. Vol. 10 (9). P. 2332-2349.

Shen Z. et al. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging // Molecular Pharmaceutics. 2017. Vol. 14 (5) P. 13521364.

Taylor A. et al. Functionalization of carbon encapsulated iron nanoparticles // Journal of Nanoparticle Research. 2010. Vol. 12 (2). P. 513-519.

Yu J. et al. Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-

guided photothermal therapy // Advanced Materials. 2014. Vol. 26 (24). P. 4114-4120.

Yu J. et al. Multistimuli-regulated photochemother-mal cancer therapy remotely controlled via Fe5C2 nanoparticles // ACS Nano. 2016. Vol. 10 (1). P. 159-169.

Zlateski V. et al. Efficient magnetic recycling of cova-lently attached enzymes on carbon-coated metallic nanomagnets // Bioconjugate Chemistry. 2014. Vol. 25 (4). P. 677-684.

References

Assa F. et al. Chitosan magnetic nanoparticles for drug delivery systems. Critical Reviews in Biotechnology, V. 7 (4) (2017): pp. 492-509.

Fuhrer R. et al. Immobilized P-cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: Reversible organic contaminant adsorption and enrichment from water. Langmuir, V. 27 (5) (2011): pp. 1924-1929.

Galakhov V.R. et al. Characterization of carbon-encapsulated nickel and iron nanoparticles by means of X-ray absorption and photoelectron spectroscopy. Journal of Physical Chemistry C., V. 114 (51) (2010): pp. 22413-22416.

Goding J.W. Antibody production by hybridomas. Journal of Immunological Methods, V. 39 (4) (1980): pp. 285-308.

Herrmann I.K. et al. High-strength metal nanomag-nets for diagnostics and medicine: Carbon shells allow long-term stability and reliable linker chemistry. Nanomedicine, V. 4 (7) (2009): pp. 787798.

Herrmann I.K. et al. In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short- and long-term exposure scenarios. Nanomedicine, V. 11 (7) (2016): pp. 783-796.

Jacobson M. et al. Uptake of ferromagnetic carbon-encapsulated metal nanoparticles in endothelial cells: Influence of shear stress and endothelial activation. Nanomedicine, V. 10 (24) (2015): pp. 3537-3546.

Kang T. et al. Surface design of magnetic nanoparti-cles for stimuli-responsive cancer imaging and therapy. Biomaterials, V. 136 (2017): pp. 98-114.

Karmakar A. et al. Radio-frequency induced in vitro thermal ablation of cancer cells by EGF function-alized carbon-coated magnetic nanoparticles. Journal of Materials Chemistry, V. 21 (34) (2011): pp. 12761-12769.

Kasprzak A. et al. Grinding-induced functionaliza-tion of carbon-encapsulated iron nanoparticles. Green Chemistry, V. 19 (15) (2017): pp. 3510-3514.

Kowalczyk A. et al. Conformational control of human transferrin covalently anchored to carbon-coated iron nanoparticles in presence of a magnetic field. Acta Biomaterialia, V. 45 (2016): pp. 367-374.

Lee H.-J. et al. Photothermal cancer therapy using graphitic carbon-coated magnetic particles prepared by one-pot synthesis. International Journal of Nanomedicine, V. 10 (2015): pp. 271-282.

Li X. et al. One-pot synthesis and functionalisation of Fe2O3@C-NH2 nanoparticles for imaging and therapy. IET Nanobiotechnology, V. 8 (2) (2014): pp. 93-101.

Li Y. et al. Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon, V. 100 (2016): pp. 165177.

Pipsa M. et al. Scalable synthesis and functionalization of cobalt nanoparticles for versatile magnetic separation and metal adsorption. Journal of Nanoparticle Research, V. 16 (9) (2014): pp. 111, art. no, 2606.

Matysiak-Brynda E. et al. Novel ultrasensitive immunosensor based on magnetic particles for direct detection of transferrin in blood. Sensors and Actuators, B: Chemical, V. 249 (2017): pp. 105113.

Sadhasivam S. et al. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyper-thermia in folate over expressed cancer cells. International Journal of Pharmaceutics, V. 480 (12) (2015): pp. 8-14.

Schreiber H.A. et al. Using carbon magnetic nanoparticles to target, track, and manipulate dendritic cells. Journal of Immunological Methods, V. 356 (1-2) (2010): pp. 47-59.

Shah M.A. et al. Nanoparticles for DNA vaccine delivery. Journal of Biomedical Nanotechnology, V. 10 (9) (2014): pp. 2332-2349.

Shen Z. et al. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Molecular Pharmaceutics, V. 14 (5) (2017): pp. 13521364.

Taylor A. et al. Functionalization of carbon encapsulated iron nanoparticles. Journal of Nanoparticle Research, V. 12 (2) (2010): pp. 513-519.

Yu J. et al. Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Advanced Materials, V. 26 (24) (2014): pp. 4114-4120.

Yu J. et al. Multistimuli-regulated photochemother-mal cancer therapy remotely controlled via Fe5C2 nanoparticles. ACS Nano, V. 10 (1) (2016): pp. 159-169.

Zlateski V. et al. Efficient magnetic recycling of co-valently attached enzymes on carbon-coated metallic nanomagnets. Bioconjugate Chemistry, V. 25 (4) (2014): pp. 677-684.

Наиболее читаемые статьи этого автора (авторов)