НОВЫЙ МЕТОД ФУНКЦИОНАЛИЗАЦИИ МАГНИТНЫХ НАНОЧАСТИЦ, ИНКАПСУЛИРОВАННЫХ УГЛЕРОДОМ
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
Assa F. et al. Chitosan magnetic nanoparticles for drug delivery systems // Critical Reviews in Biotechnology. 2017. Vol. 7 (4). P. 492-509.
Fuhrer R. et al. Immobilized P-cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: Reversible organic contaminant adsorption and enrichment from water // Langmuir. 2011. Vol. 27 (5). P. 1924-1929.
Galakhov V.R. et al. Characterization of carbon-encapsulated nickel and iron nanoparticles by means of X-ray absorption and photoelectron spectroscopy // Journal of Physical Chemistry C. 2010. Vol. 114 (51). P. 22413-22416.
Goding J. W. Antibody production by hybridomas // Journal of Immunological Methods. 1980. Vol. 39 (4). P. 285-308.
Herrmann I.K. et al. High-strength metal nanomag-nets for diagnostics and medicine: Carbon shells allow long-term stability and reliable linker chemistry // Nanomedicine. 2009. Vol. 4 (7). P. 787798.
Herrmann I.K. et al. In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short- and long-term exposure scenarios // Nanomedicine. 2016. Vol. 11 (7). P. 783-796.
Kang T. et al. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy // Biomaterials. 2017. Vol. 136. P. 98114.
Karmakar A. et al. Radio-frequency induced in vitro thermal ablation of cancer cells by EGF functionalized carbon-coated magnetic nanoparticles // Journal of Materials Chemistry. 2011. Vol. 21 (34). P. 12761-12769.
Kasprzak A. et al. Grinding-induced functionalization of carbon-encapsulated iron nanoparticles // Green Chemistry. 2017. Vol. 19 (15). P. 3510-3514.
Kowalczyk A. et al. Conformational control of human transferrin covalently anchored to carbon-coated iron nanoparticles in presence of a magnetic field // Acta Biomaterialia. 2016. Vol. 45 P. 367-374.
Lee H.-J. et al. Photothermal cancer therapy using graphitic carbon-coated magnetic particles prepared by one-pot synthesis // International Journal of Nanomedicine. 2015. Vol. 10. P. 271-282.
Li X. et al. One-pot synthesis and functionalisation of Fe2O3@C-NH2 nanoparticles for imaging and therapy // IET Nanobiotechnology. 2014. Vol. 8 (2). P. 93-101.
Li Y. et al. Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization // Carbon. 2016. Vol. 100. P. 165-177.
Mattila P. et al. Scalable synthesis and functionalization of cobalt nanoparticles for versatile magnetic separation and metal adsorption // Journal of Nanoparticle Research. 2014. Vol. 16 (9). art. no. 2606.
Matysiak-Brynda E. et al. Novel ultrasensitive immunosensor based on magnetic particles for direct detection of transferrin in blood // Sensors and Actuators, B: Chemical. 2017. Vol. 249. P. 105113.
Sadhasivam S. et al. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells // International Journal of Pharmaceutics. 2015. Vol. 480 (1-2). P. 814.
Schreiber H.A. et al. Using carbon magnetic nanoparticles to target, track, and manipulate dendritic cells // Journal of Immunological Methods. 2010. Vol. 356 (1-2). P. 47-59.
Shah M.A.A. et al. Nanoparticles for DNA vaccine delivery // Journal of Biomedical Nanotechnology. 2014. Vol. 10 (9). P. 2332-2349.
Shen Z. et al. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging // Molecular Pharmaceutics. 2017. Vol. 14 (5) P. 13521364.
Taylor A. et al. Functionalization of carbon encapsulated iron nanoparticles // Journal of Nanoparticle Research. 2010. Vol. 12 (2). P. 513-519.
Yu J. et al. Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-
guided photothermal therapy // Advanced Materials. 2014. Vol. 26 (24). P. 4114-4120.
Yu J. et al. Multistimuli-regulated photochemother-mal cancer therapy remotely controlled via Fe5C2 nanoparticles // ACS Nano. 2016. Vol. 10 (1). P. 159-169.
Zlateski V. et al. Efficient magnetic recycling of cova-lently attached enzymes on carbon-coated metallic nanomagnets // Bioconjugate Chemistry. 2014. Vol. 25 (4). P. 677-684.
References
Assa F. et al. Chitosan magnetic nanoparticles for drug delivery systems. Critical Reviews in Biotechnology, V. 7 (4) (2017): pp. 492-509.
Fuhrer R. et al. Immobilized P-cyclodextrin on surface-modified carbon-coated cobalt nanomagnets: Reversible organic contaminant adsorption and enrichment from water. Langmuir, V. 27 (5) (2011): pp. 1924-1929.
Galakhov V.R. et al. Characterization of carbon-encapsulated nickel and iron nanoparticles by means of X-ray absorption and photoelectron spectroscopy. Journal of Physical Chemistry C., V. 114 (51) (2010): pp. 22413-22416.
Goding J.W. Antibody production by hybridomas. Journal of Immunological Methods, V. 39 (4) (1980): pp. 285-308.
Herrmann I.K. et al. High-strength metal nanomag-nets for diagnostics and medicine: Carbon shells allow long-term stability and reliable linker chemistry. Nanomedicine, V. 4 (7) (2009): pp. 787798.
Herrmann I.K. et al. In vivo risk evaluation of carbon-coated iron carbide nanoparticles based on short- and long-term exposure scenarios. Nanomedicine, V. 11 (7) (2016): pp. 783-796.
Jacobson M. et al. Uptake of ferromagnetic carbon-encapsulated metal nanoparticles in endothelial cells: Influence of shear stress and endothelial activation. Nanomedicine, V. 10 (24) (2015): pp. 3537-3546.
Kang T. et al. Surface design of magnetic nanoparti-cles for stimuli-responsive cancer imaging and therapy. Biomaterials, V. 136 (2017): pp. 98-114.
Karmakar A. et al. Radio-frequency induced in vitro thermal ablation of cancer cells by EGF function-alized carbon-coated magnetic nanoparticles. Journal of Materials Chemistry, V. 21 (34) (2011): pp. 12761-12769.
Kasprzak A. et al. Grinding-induced functionaliza-tion of carbon-encapsulated iron nanoparticles. Green Chemistry, V. 19 (15) (2017): pp. 3510-3514.
Kowalczyk A. et al. Conformational control of human transferrin covalently anchored to carbon-coated iron nanoparticles in presence of a magnetic field. Acta Biomaterialia, V. 45 (2016): pp. 367-374.
Lee H.-J. et al. Photothermal cancer therapy using graphitic carbon-coated magnetic particles prepared by one-pot synthesis. International Journal of Nanomedicine, V. 10 (2015): pp. 271-282.
Li X. et al. One-pot synthesis and functionalisation of Fe2O3@C-NH2 nanoparticles for imaging and therapy. IET Nanobiotechnology, V. 8 (2) (2014): pp. 93-101.
Li Y. et al. Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon, V. 100 (2016): pp. 165177.
Pipsa M. et al. Scalable synthesis and functionalization of cobalt nanoparticles for versatile magnetic separation and metal adsorption. Journal of Nanoparticle Research, V. 16 (9) (2014): pp. 111, art. no, 2606.
Matysiak-Brynda E. et al. Novel ultrasensitive immunosensor based on magnetic particles for direct detection of transferrin in blood. Sensors and Actuators, B: Chemical, V. 249 (2017): pp. 105113.
Sadhasivam S. et al. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyper-thermia in folate over expressed cancer cells. International Journal of Pharmaceutics, V. 480 (12) (2015): pp. 8-14.
Schreiber H.A. et al. Using carbon magnetic nanoparticles to target, track, and manipulate dendritic cells. Journal of Immunological Methods, V. 356 (1-2) (2010): pp. 47-59.
Shah M.A. et al. Nanoparticles for DNA vaccine delivery. Journal of Biomedical Nanotechnology, V. 10 (9) (2014): pp. 2332-2349.
Shen Z. et al. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Molecular Pharmaceutics, V. 14 (5) (2017): pp. 13521364.
Taylor A. et al. Functionalization of carbon encapsulated iron nanoparticles. Journal of Nanoparticle Research, V. 12 (2) (2010): pp. 513-519.
Yu J. et al. Multifunctional Fe5C2 nanoparticles: a targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Advanced Materials, V. 26 (24) (2014): pp. 4114-4120.
Yu J. et al. Multistimuli-regulated photochemother-mal cancer therapy remotely controlled via Fe5C2 nanoparticles. ACS Nano, V. 10 (1) (2016): pp. 159-169.
Zlateski V. et al. Efficient magnetic recycling of co-valently attached enzymes on carbon-coated metallic nanomagnets. Bioconjugate Chemistry, V. 25 (4) (2014): pp. 677-684.