СНИЖЕНИЕ КОЛОНИЗАЦИИ ПОЛИДИМЕТИЛСИЛОКСАНА STAPHYLOCOCCUS EPIDERMIDIS
##plugins.themes.bootstrap3.article.main##
Аннотация
##plugins.themes.bootstrap3.article.details##
Лицензионный договор на право использования научного произведения в научных журналах, учредителем которых является Пермский государственный национальный исследовательский университет
Текст Договора размещен на сайте Пермского государственного национального исследовательского университета http://www.psu.ru/, а также его можно получить по электронной почте в «Отделе научных периодических и продолжающихся изданий ПГНИУ»: YakshnaN@psu.ru или в редакциях научных журналов ПГНИУ.
Библиографические ссылки
Божкова СЛ. и др. Способность к формированию биопленок у клинических штаммов S. aureus и S. epidermidis — ведущих возбудителей ортопедической имплант-ассоциированной инфекции // Клин, микробиол. антимикроб, химиотер. 2014. Т. 16, №2. С. 149-156.
Busscher H.J. et al. Biomaterial-associated infection: locating the finish line in the race for the surface // Science Translational Medicine. 2012. Vol. 4. P. 153rvl0.
Chu P.K. et al. Plasma-surface modification of bioma-terials // Material Science Engineering: R: reports. 2002. Vol. 36, is.5-6. P 143-206.
Donlan R.M. Biofilms and device-associated infections // Emerging. Infectious Diseases. 2001. Vol. 7, is. 2. P. 277-281.
Ektessabi A.M., Sano T. Sputtering and thermal effect during ion microbeam patterning of polymeric films // Review of Scientific Instruments. 2000. Vol. 71, is. 2. P. 1012-1015.
Jiang X., Pace J.L. Microbial Biofilms // Biofilms, Infection and Antimicrobial Therapy; Pace J.L., Rupp M.,Finch R.G., eds. Taylor & Francis Group: Boca Raton,FL, USA. 2006. P. 3-19.
Katsikogianni M., Missirlis Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions // European Cells and Materials. 2004. Vol. 8. P. 37-57.
Kondyurin A., BilekM. Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space. Elsevier, 2015. P. 185-215.
Mekewi M. et al. Imparting permanent antimicrobial activity onto viscose and acrylic fibers // International Journal of Biological Macromole-cules. 2012.Vol. 50. P. 1055-1062.
Otto M. Staphylococcal biofilms // Current Topics in Microbiology and Immunology. 2008. Vol. 322. P. 207-208.
Padmavathy N., Vijayaraghavan R. Enhanced bioac-tivity of ZnO nanoparticles—an antimicrobial study // Science and Technology of Advanced Materials. 2008. Vol. 9. P. 035004(l)-035004(7).
Pasqueta J. et al. The contribution of zinc ions to the antimicrobial activity of zinc oxide // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014. Vol. 457. P. 263-274.
Pavlukhina S., Sukhishvili S. Polymer assemblies for controlled delivery of bioactive molecules from surfaces // Advanced Drug Delivery Reviews. 2011. Vol. 63. P. 822-836.
Zhang L. et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli II Journal Nanoparti-cle Research. 2010. Vol. 12. P. 1625-1636.
References
Bozhkova S. A. et. al. [Ability to formation of biofilms of S. aureus u S. epidermidis clinical strains - the main causative agents of implant-associated infections] Klinicheskaya microbi-ologiya i antimicrobnaya khimioterapiya. 2014. V. 16. Is. 2. P. 149-156. (In Russ.)
Busscher H. .J., et al. Biomaterial-associated infection: locating the finish line in the race for the surface. Science Translational Medicine. 2012, V. 4, pp. 153rvl0.
Chu, P.K. et al. Plasma-surface modification of biomaterials. Material Science Engineering: R: reports. 2002, V 36, Is. 5-6, pp. 143-206.
Donlan R.M., Biofilms and device-associated infections. Emerging. Infectious Diseases. 2001, Is. 2, V. 7, pp. 277-281.
Ektessabi A.M., Sano T. Sputtering and thermal effect during ion microbeam patterning of polymeric films. Review of Scientific Instruments. 2000, V. 71, Is. 2, pp. 1012-1015.
Jiang X., Pace J.L. Microbial Biofilms. Biofilms, Infection and Antimicrobial Therapy; Pace J.L., Rupp M.,Finch R.G., eds. Taylor & Francis Group: Boca Raton,FL, USA. 2006, pp. 3-19.
Katsikogianni M., Missirlis Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells and Materials. 2004, V. 8. pp. 37-57.
Kondyurin A., Bilek M. Ion Beam Treatment of Polymers: Application Aspects from Medicine to Space. Elsevier, 2015, pp. 185-215.
Mekewi M. et al. Imparting permanent antimicrobial activity onto viscose and acrylic fibers. International Journal of Biological Macromole-cules. 2012,V. 50, pp. 1055-1062.
Otto M. Staphylococcal biofilms. Current Topics in Microbiology and Immunology. 2008, V. 322, pp. 207-208.
Padmavathy N., Vijayaraghavan R. Enhanced bioac-tivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials. 2008, V. 9, pp. 035004(l)-035004(7).
Pasqueta J. et al. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014, V. 457, pp. 263-274.
Pavlukhina S, Sukhishvili S. Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Advanced Drug Delivery Reviews. 2011, V. 63, pp. 822-836.
Zhang L. et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. Journal Nanoparti-cle Research. 2010, V. 12, pp. 1625-1636.