МОДИФИЦИРУЮЩЕЕ ДЕЙСТВИЕ ЭКСТРАКТОВ КОЖИЦЫ ВИНОГРАДА И КРАСНОГО ВИНА НА ЧУВСТВИТЕЛЬНОСТЬ БАКТЕРИЙ ESCHERICHIA COLI К РАЗЛИЧНЫМ АНТИБИОТИКАМ

##plugins.themes.bootstrap3.article.main##

Ксения/Kseniya Викторовна/Viktorovna Безматерных/Bezmaternykh
Галина/Galina Васильевна/Vasil'evna Смирнова/Smirnova
Олег/Oleg Николаевич/Nikolaevich Октябрьский/Oktyabrsky

Аннотация

Экстракты красного вина и кожицы винограда содержат значительное количество полифенолов, включая активные антиоксиданты кверцетин и ресвератрол, и проявляют высокую антирадикальную и хелатирующую способность. Внесение экстрактов в культуру E. coli вызывает 30%-ное ин-гибирование скорости роста, индукцию антиоксидантных генов katG и sodA и повышение устойчивости бактерий к перекиси водорода. Предобработка клеток E. coli каждым из экстрактов снижает бактерицидную активность ципрофлоксацина и цефотаксима и, наоборот, усиливает чувствительность бактерий к канамицину и стрептомицину. Воздействие экстрактов осуществляется, по-видимому, путем их влияния на скорость роста бактерий, редокс-статус клеток и уровень экспрессии антиоксидантных генов. В случае ципрофлоксацина, предобработка экстрактами может снижать степень повреждения ДНК и уровень индукции SOS-ответа. Модулирующий эффект экстрактов должен учитываться при антибиотикотерапии.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Безматерных/Bezmaternykh К. В., Смирнова/Smirnova Г. В., & Октябрьский/Oktyabrsky О. Н. (2018). МОДИФИЦИРУЮЩЕЕ ДЕЙСТВИЕ ЭКСТРАКТОВ КОЖИЦЫ ВИНОГРАДА И КРАСНОГО ВИНА НА ЧУВСТВИТЕЛЬНОСТЬ БАКТЕРИЙ ESCHERICHIA COLI К РАЗЛИЧНЫМ АНТИБИОТИКАМ. Вестник Пермского университета. Серия Биология, (4), 322–329. извлечено от http://press.psu.ru/index.php/bio/article/view/1768
Раздел
Микробиология
Биографии авторов

Ксения/Kseniya Викторовна/Viktorovna Безматерных/Bezmaternykh, ФГБУН «Институт экологии и генетики микроорганизмов УрО РАН»

Ст. инженер лаборатории физиологии и генетики микроорганизмов

Галина/Galina Васильевна/Vasil'evna Смирнова/Smirnova, ФГБУН «Институт экологии и генетики микроорганизмов УрО РАН»

Доктор биологических наук, ведущий научный сотрудник лаборатории физиологии и генетики микроорганизмов

Олег/Oleg Николаевич/Nikolaevich Октябрьский/Oktyabrsky, ФГБУН «Институт экологии и генетики микроорганизмов УрО РАН»; ФГБОУ ВПО «Пермский национальный исследовательский политехнический университет»

Доктор биологических наук, профессор, зав. лаборатории физиологии и генетики микроорганизмов;Профессор кафедры химии и биотехнологии

Библиографические ссылки

Смирнова Г.B. и др. Роль тиоловых редокс-систем при ответе бактерий Escherichia coli на стрессорные воздействия температур и антибиотиков //Микробиология. 2016. Т. 85(1). С. 1-11.

Belenky P. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage // Cell Rep. 2015. Vol. 13. P. 968-980.

Crozier A., Jaganath I.B., Clifford M.N. Dietary phe-nolics: chemistry, bioavailability and effects on health // Nat. Prod. Rep. 2009. Vol. 26. P. 1001-1043.

Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids // Int. J. Antimicrob. Agents 2005. Vol. 26. P. 343-356.

Drlica K. et al. Quinolone-mediated bacterial death // Antimicrob. Agents Chemother. 2008. Vol. 52. P. 385-392.

Eberhardt M.V., Jeffery E.H. Perspective. When dietary antioxidants perturb the thiol redox // J. Sei. Food Agric. 2006. Vol. 86. P. 1996-1998.

Hwang D., Lim Y.H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression// Sei. Rep. 2015. Vol. 5. P. 10029.

Kim H-J. et al. Evalution of antioxidant activity of Vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents // J. Agric. Food Chem. 2005. Vol. 53. P. 7691-7695.

Marathe S.A. et al. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi II J. Antimicrob. Chemother. 2013. Vol. 68. P. 139-152.

Miller J.H. Experiments in molecular genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press. 1972.

Obeidat M. et al. Antimicrobial activity of crude extracts of some plant leaves // Res. J. Microbiol. 2012. Vol. 7. P. 59-67.

Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding // Cell Biochem. Biophys. 2009. Vol. 53. P. 75-100.

Piddock L.J.V., Wise R. Induction of the SOS response in Escherichia coli by 4-quinolone antimicrobial agents // FEMS Microbiol. Lett. 1987. Vol. 41. P. 289-294.

Rice-Evans C.A. et al. The relative antioxidant activities of plant-derived polyphenols flavonoids // Free Radic. Res. 1995. Vol. 22. P. 375-383.

Samoilova Z. et al. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics // Microb. Res. 2014. Vol. 169. P. 307-317.

Scalbert A. Antimicrobial properties of tannins // Phytochemistry. 1991. Vol. 30. P. 3875-3883.

Shyur L-F. et al. Antioxidant properties of extracts from medicinal plants popularly used in Taiwan // Inter. J. Appl. Sei. Eng. Technol. 2005. Vol. 3. P. 195-202.

Smirnova G. V. et al Influence of polyphenols on Escherichia coli resistance to oxidative stress. // Free Radic. Biol. Med. 2009. Vol. 46. P. 759-768.

Smirnova G. et al. Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of Escherichia coli II J. Appl. Microbiol. 2012. Vol. 113. P. 192-199.

Smith A.H., Lmlay J.A., Mackie R.I. Increasing the oxidative stress response allows Escherichia coli to overcome inhibitory effects of condensed tannins // Appl. Environ. Microbiol. 2003. Vol. 69. P. 3406-3411.

Subramanian M. et al. Resveratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation // Redox biology. 2014. Vol. 2. P. 865-872.

Tang S.Y., Halliwell B. Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies? // Biochem. Biophys. Res. Commun. 2010. Vol. 394. P. 1-5.

Tao K. et al. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins // Mol. Gen. Genet. 1989. Vol. 218. P. 371-376.

Wu L-C. et al. Antioxidant and antiproliferative activities of red pitaya // Food Chem. 2006. Vol. 95. P. 319-327.

__________________________________________________________

Smirnova G.V., Lepekhina E.V., Muzyka N.G. et al. [Role of thiol redox systems in Escherichia coli response to thermal and antibiotic stresses] Mik-robiologiya. V. 85 (2016): pp. 1-11. (In Russ).

Belenky P., Ye J.D., Porter C.B.M. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep. V. 13 (2015): pp. 968-980.

Crozier A., Jaganath I.B., Clifford M.N. Dietary phe-nolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. V. 26 (2009): pp. 1001-1043.

Cushnie T.P.T., Lamb A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents V. 26 (2005): pp. 343-356.

Drlica K., Malik M., Kerns R.J. et al. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother. V. 52 (2008): pp. 385-392.

Eberhardt M.V., Jeffery E.H. Perspective. When dietary antioxidants perturb the thiol redox. J. Sci. Food Agric. V. 86 (2006): pp. 1996-1998.

Hwang D., Lim Y.H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci. Rep. V. 5 (2015): pp. 10029.

Kim H-J., Chen F., Wang X. et al. Evalution of antioxidant activity of Vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents. J. Agric. Food Chem. V. 53. (2005): pp. 7691-7695.

Marathe S.A., Kumar R., Ajitkumar P. et al. Curcumin reduces the antimicrobial activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi. J. Antimicrob. Chemother. V. 68 (2013): pp. 139-152.

Miller J.H. Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory Press. 1972.

Obeidat M., Shatnawi M., Al dmoor H. et al. Antimicrobial activity of crude extracts of some plant leaves. Res. J. Microbiol. V. 7 (2012): pp. 59-67.

Perron N.R., Brumaghim J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys. V. 53 (2009): pp. 75-100.

Piddock L.J.V., Wise R. Induction of the SOS response in Escherichia coli by 4-quinolone antimicrobial agents. FEMS Microbiol. Lett. V. 41 (1987): pp. 289-294.

Rice-Evans C.A., Miller N.J., Bolwell P.G. et al. The relative antioxidant actuvities of plant-derived polyphenolic flavonoids. Free Radic. Res. V. 22 (1995): pp. 375-383.

Samoilova Z., Smirnova G., Muzyka N. et al. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics. Microb. Res. V. 169 (2014): pp. 307-317.

Scalbert A. Antimicrobial properties of tannins. Phytochemistry. V. 30 (1991): pp. 3875-3883.

Shyur L-F., Tsung J-H., Chen J-H. et al. Antioxidant properties of extracts from medicinal plants popularly used in Taiwan. Lnter. J. Appl. Sci. Eng. Technol. V. 3 (2005): pp. 195-202.

Smirnova G.V., Samoylova Z.Y., Muzyka N.G. et al. Influence of polyphenols on Escherichia coli resistance to oxidative stress. Free Radic. Biol. Med. V. 46 (2009): pp. 759-768.

Smirnova G., Samoilova Z., Muzyka N. et al. Influence of plant polyphenols and medicinal plant extracts on antibiotic susceptibility of Escherichia coli. J. Appl. Microbiol. V. 113 (2012): pp. 192-199.

Smith A.H., Imlay J.A., Mackie R.I. Increasing the oxidative stress response allows Escherichia coli to overcome inhibitory effects of condensed tannins. Appl. Environ. Microbiol. V. 69 (2003): pp. 3406-3411.

Subramanian M., Goswami M., Chakraborty S. Res-veratrol induced inhibition of Escherichia coli proceeds via membrane oxidation and independent of diffusible reactive oxygen species generation. Redox biology. V. 2 (2014): pp. 865-872.

Tang S.Y., Halliwell B. Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies? Biochem. Biophys. Res. Commun. V. 394 (2010): pp. 1-5.

Tao K., Makino K., Yonei S. et al. Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins. Mol. Gen. Genet. V. 218 (1989): pp. 371-376.

Wu L-C., Hsu H-W., Chen Y-C. et al. Antioxidant and antiproliferative activities of red pitaya. Food Chem. V. 95 (2006): pp. 319-327.

Наиболее читаемые статьи этого автора (авторов)