Formation of Optical Polymer Bridge for Fiber-Optic Temperature Sensor
DOI:
https://doi.org/10.17072/1993-0550-2025-3-71-79Keywords:
temperature sensor, optical fiber, Fabry-Perot interferometer, polymer bridgeAbstract
The paper presents a method of fabrication of a fiber-optic temperature sensor based on an end-face Fabry-Perot interferometer made in the form of a polymer “bridge”, a part of which is a sensitive element of the sensor. The main material for creation of the sensitive part is UV-curable resin, transparent for optical and near-infrared range. The performance of the sensor was tested using an optical spectrum analyzer. The peaks and dips visible on the reflection spectrum of the broadband radiation source indicated the correct operation of the Fabry-Perot interferometer, and their displacement when the sample temperature changes allowed to measure the sensitivity of the proposed type of sensor. As a result of this work it is shown that the sensitivity of the developed sensor is higher than that of existing analogs, and its dimensions allow its application in biomedical applications and critical temperature measurements.References
Yang M., Peng J., Wang G., Dai J. Fiber Optic Sensors Based on Nano-Films. In Fiber Optic Sensors // Smart Sensors, Measurement and Instrumentation; Springer International Publishing: Cham, 2017. Vol. 21. P. 1–30. ISBN 978-3-319-42624-2. DOI: 10.1007/978-3-319-42625-9_1. EDN: YINRLW.
Chen Z., Xiong S., Gao S., Zhang H., Wan L., Huang X., Huang B., Feng Y., Liu W., Li Z. High-Temperature Sensor Based on Fabry-Perot Interferometer in Microfiber Tip // Sensors. 2018. Vol. 18. 202. DOI: 10.3390/s18010202.
Li J., Jia P., Fang G., Wang J., Qian J., Ren Q., Xiong J. Batch-Producible All-Silica Fiber-Optic Fabry-Perot Pressure Sensor for High-Temperature Applications up to 800 °C // Sensors and Actu-ators A: Physical 2022. Vol. 334. P. 113363. DOI: 10.1016/j.sna.2022.113363 EDN: KGXSGH.
Mohammed P. A., Wadsworth W. J. Long Free Standing Polymer Waveguides Fabricated Between Single-Mode Optical Fiber Cores // J. Light wave Technol. JLT 2015. Vol. 33. P. 4384–4389. DOI: 10.1109/JLT.2015.2471810. EDN: VFFPNZ.
Hussein S. M. R. H.; Sakhabutdinov A. Zh., Morozov O. G., Anfinogentov, V. I., Tunakova J. A.; Shagidullin A. R., Kuznetsov A. A., Lipatnikov K. A., Nasybullin A. R. Applicability Limits of the End Face Fiber-Optic Gas Concentration Sensor, Based on Fabry-Perot Interferometer // Karbala International Journal of Modern Science. 2022. Vol. 8. P. 339–355. DOI: 10.33640/2405-609X.3243. EDN: WVHXFE.
Хуссейн С. М., Каид М., Альхуссейн А. Н., Аглиуллин Т. А., Самигуллин Д. В., Валеев Б. И., Сахабутдинова Л. А. Цельностеклянный волоконно-оптический торцевой микротермометр // International Research Journal. 2023. №11 (137). С. 1–8. DOI: 10.23670/IRJ.2023.137.42. EDN: UDAMDG.
Liu Z., Zhao B., Zhang Y., Zhang Y., Sha Ch., Yang J., Yuan L. Optical fiber temperature sensor based on Fabry-Perot interferometer with photopolymer material // Sensors and Actuators A: Phys-ical. 2022.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Мария Алексеевна Чеснокова, Даниль Илдарович Нурмухаметов, Роман Сергеевич Пономарев, Татьяна Александровна Терехина, Валерий Нагимович Аптуков

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are published under license Creative Commons Attribution 4.0 International (CC BY 4.0).
